The Improved Interpolating Dimension Splitting Element-Free Galerkin Method for 3D Potential Problems

Author(s):  
Zhijuan Meng ◽  
Yuye Ma ◽  
Xiaofei Chi ◽  
Lidong Ma

This paper proposes the improved interpolating dimension splitting element-free Galerkin (IIDSEFG) method based on the nonsingular weight function for three-dimensional (3D) potential problems. The core of the IIDSEFG method is to transform the 3D problem domain into a series of two-dimensional (2D) problem subdomains along the splitting direction. For the 2D problems on these 2D subdomains, the shape function is constructed by the improved interpolating moving least-squares (IIMLS) method based on the nonsingular weight function, and the finite difference method (FDM) is used to couple the discretized equations in the direction of splitting. Finally, the calculation formula of the IIDSEFG method for a 3D potential problem is derived. Compared with the improved element-free Galerkin (IEFG) method, the advantages of the IIDSEFG method are that the shape function has few undetermined coefficients and the essential boundary conditions can be executed directly. The results of the selected numerical examples are compared by the IIDSEFG method, IEFG method and analytical solution. These numerical examples illustrate that the IIDSEFG method is effective to solve 3D potential problems. The computational accuracy and efficiency of the IIDSEFG method are better than the IEFG method.

2019 ◽  
Vol 11 (10) ◽  
pp. 1950104 ◽  
Author(s):  
Yajie Deng ◽  
Xiaoqiao He ◽  
Ying Dai

In this paper, the improved interpolating complex variable moving least squares (IICVMLS) method is applied, in which the complete basis function is introduced and combined with the singular weight function to achieve the orthometric basis function. Then, the interpolating shape function is achieved to construct the interpolating trial function. Incorporating the IICVMLS method and the Galerkin integral weak form, an improved interpolating complex variable element free Galerkin (IICVEFG) method is proposed to solve the 2D potential problem. Because the essential boundary conditions can be straightaway imposed in the above method, the expressions of final dispersed matrices are more concise in contrast to the non-interpolating complex variable meshless methods. Through analyzing four specific potential problems, the IICVEFG method is validated with greater computing precision and efficiency.


2020 ◽  
Vol 42 (4) ◽  
pp. 415-426
Author(s):  
Canh V. Le ◽  
Phuc L. H. Ho

This paper presents a novel numerical formulation of computational homogenization analysis of materials at limit state. The fluctuating displacement field are approximated using the Element-Free Galerkin (EFG) meshless method. The estimated yield surface of materials can be determined by handling the multiscale (macro-micro) transition. Taking advantage of high-order EFG shape function and the second-order cone programming, the resulting optimization problem can be solved rapidly with the great accuracy. Several benchmark examples will be investigated to demonstrate the computational efficiency of proposed method.


Sign in / Sign up

Export Citation Format

Share Document