bulk metal forming
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 3)

AI ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 307-329
Author(s):  
Christopher Sauer ◽  
Thilo Breitsprecher ◽  
Christof Küstner ◽  
Benjamin Schleich ◽  
Sandro Wartzack

Substantial efforts have been made to integrate manufacturing- and design-relevant knowledge into product development processes. A common approach is to provide the relevant knowledge to the design engineers using a knowledge-based system (KBS) that, in turn, becomes the engineering assistance system. Keeping the knowledge up to date is a critical issue, making knowledge acquisition a bottleneck of developing and maintaining KBS. This article presents a robust metamodel optimization and performance estimation architecture for developing and maintaining a KBS useful for design-for-manufacturing from the context of sheet-bulk metal forming. It is shown that the presented KBS or engineering assistance system helps achieve performing design-for-manufacturing, integrating both design and manufacturing knowledge. Using the presented approach helps overcome the bottleneck of knowledge acquisition and knowledge update through its self-learning component based on data mining and knowledge discovery.


2021 ◽  
Vol 5 (2) ◽  
pp. 49
Author(s):  
Andreas Hetzel ◽  
Robert Schulte ◽  
Manfred Vogel ◽  
Michael Lechner ◽  
Hans-Bernward Besserer ◽  
...  

Due to rising demands regarding the functionality and load-bearing capacity of functional components such as synchronizer rings in gear systems, conventional forming operations are reaching their limits with respect to formability and efficiency. One way to meet these challenges is the application of the innovative process class of sheet-bulk metal forming (SBMF). By applying bulk forming operations to sheet metal, the advantages of both process classes can be combined, thus realizing an optimized part weight and an adapted load-bearing capacity. Different approaches to manufacturing relevant part geometries were presented and evaluated regarding the process properties and applicability. In this contribution, a self-learning engineering workbench was used to provide geometry-based data regarding a novel component geometry with circumferential involute gearing manufactured in an SBMF process combination of deep drawing and upsetting. Within the comprehensive investigations, the mechanical and geometrical properties of the part were analyzed. Moreover, the manufactured components were compared regarding the increased fatigue strength in cyclic load tests. With the gained experimental and numerical data, the workbench was used for the first time to generate the desired component as a CAD model, as well as to derive design guidelines referring to the investigated properties and fatigue behavior.


2021 ◽  
Author(s):  
Manuel Reck ◽  
Marion Merklein

Due to the ongoing technological development, the demand for geometrically complicated high performance parts with great functional density is increasing. Often, the use of sheet metal is a beneficial approach in manufacturing technology to meet the requirements on components regarding material strength and lightweight construction goals. The forming of therefore required complex sheet metal part geometries with integrated functional elements cause the need for a three dimensional material flow. Sheet-bulk metal forming, characterized by the application of bulk forming operations on sheet metals, is a suitable approach to produce such components. A challenge is the material flow control, resulting in an insufficient die filling of the functional elements. The use of tailored blanks with a defined sheet thickness distribution is an auspicious approach to face this challenge in subsequent forming processes. In the presented work, semi-finished products with a continuous thickness profile manufactured by orbital forming are applied in a full forward extrusion process. By an additional implementation of a heat treatment, the tailored blanks undergo a recrystallization process that causes a softening of the strain hardened material. In this paper, the potential of a heat treatment in the process class of sheet-bulk metal forming is shown by characterizing the geometrical and mechanical properties of the functional components by applying the mild deep drawing steel DC04 with an initial sheet thickness of t0 = 2.0 mm.


Author(s):  
Sebastian Wernicke ◽  
Marlon Hahn ◽  
Andreas Detzel ◽  
Wolfgang Tillmann ◽  
Dominic Stangier ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2389
Author(s):  
Lennart Hinz ◽  
Sebastian Metzner ◽  
Philipp Müller ◽  
Robert Schulte ◽  
Hans-Bernward Besserer ◽  
...  

Fringe projection profilometry in combination with other optical measuring technologies has established itself over the last decades as an essential complement to conventional, tactile measuring devices. The non-contact, holistic reconstruction of complex geometries within fractions of a second in conjunction with the lightweight and transportable sensor design open up many fields of application in production metrology. Furthermore, triangulation-based measuring principles feature good scalability, which has led to 3D scanners for various scale ranges. Innovative and modern production processes, such as sheet-bulk metal forming, thus, utilize fringe projection profilometry in many respects to monitor the process, quantify possible wear and improve production technology. Therefore, it is essential to identify the appropriate 3D scanner for each application and to properly evaluate the acquired data. Through precise knowledge of the measurement volume and the relative uncertainty with respect to the specimen and scanner position, adapted measurement strategies and integrated production concepts can be realized. Although there are extensive industrial standards and guidelines for the quantification of sensor performance, evaluation and tolerancing is mainly global and can, therefore, neither provide assistance in the correct, application-specific positioning and alignment of the sensor nor reflect the local characteristics within the measuring volume. Therefore, this article compares fringe projection systems across various scale ranges by positioning and scanning a calibrated sphere in a high resolution grid.


Author(s):  
Lorenzo Scandola ◽  
Christoph Büdenbender ◽  
Michael Till ◽  
Daniel Maier ◽  
Michael Ott ◽  
...  

AbstractThe optimal design of the tools in bulk metal forming is a crucial task in the early design phase and greatly affects the final accuracy of the parts. The process of tool geometry assessment is resource- and time-consuming, as it consists of experience-based procedures. In this paper, a compensation method is developed with the aim to reduce geometrical deviations in hot forged parts. In order to simplify the transition process between the discrete finite-element (FE) mesh and the computer-aided-design (CAD) geometry, a strategy featuring an equivalent surrogate model is proposed. The deviations are evaluated on a reduced set of reference points on the nominal geometry and transferred to the FE nodes. The compensation approach represents a modification of the displacement-compatible spring-forward method (DC-SF), which consists of two elastic FE analyses. The compatible stress originating the deviations is estimated and subsequently applied to the original nominal geometry. After stress relaxation, an updated nominal geometry of the part is obtained, whose surfaces represent the compensated tools. The compensation method is verified by means of finite element simulations and the robustness of the algorithm is demonstrated with an additional test geometry. Finally, the compensation strategy is validated experimentally.


Author(s):  
A. Franceschi ◽  
J. Stahl ◽  
C. Kock ◽  
R. Selbmann ◽  
S. Ortmann-Ishkina ◽  
...  

AbstractThe family of bulk forming technologies comprises processes characterised by a complex three-dimensional stress and strain state. Besides shape and material properties, also residual stresses are modified during a bulk metal forming process. The state of residual stresses affects important properties, like fatigue behaviour and corrosion resistance. An adjustment of the residual stresses is possible through subsequent process steps such as heat treatments or mechanical surface modification technologies, like shot peening and deep rolling. However, these additional manufacturing steps involve supplementary costs, longer manufacturing times and harmful effects on the product quality. Therefore, an optimized strategy consists in a targeted introduction of residual stresses during the forming processes. To enable this approach, a fundamental understanding of the underlying mechanisms of residual stress generation in dependence of the forming parameters is necessary. The current state of the art is reviewed in this paper. Strategies for the manipulation of the residual stresses in different bulk forming processes are classified according to the underlying principles of process modification.


Sign in / Sign up

Export Citation Format

Share Document