scholarly journals SHIFTED AND SHIFTLESS PARTITION IDENTITIES II

2007 ◽  
Vol 03 (01) ◽  
pp. 43-84 ◽  
Author(s):  
FRANK G. GARVAN ◽  
HAMZA YESILYURT

Let S and T be sets of positive integers and let a be a fixed positive integer. An a-shifted partition identity has the form [Formula: see text] Here p(S,n) is the number partitions of n whose parts are elements of S. For all known nontrivial shifted partition identities, the sets S and T are unions of arithmetic progressions modulo M for some M. In 1987, Andrews found two 1-shifted examples (M = 32, 40) and asked whether there were any more. In 1989, Kalvade responded with a further six. In 2000, the first author found 59 new 1-shifted identities using a computer search and showed how these could be proved using the theory of modular functions. Modular transformation of certain shifted identities leads to shiftless partition identities. Again let a be a fixed positive integer, and S, T be distinct sets of positive integers. A shiftless partition identity has the form [Formula: see text] In this paper, we show, except in one case, how all known 1-shifted and shiftless identities follow from a four-parameter theta-function identity due to Jacobi. New shifted and shiftless partition identities are proved.

2021 ◽  
Vol Volume 43 - Special... ◽  
Author(s):  
Zhi-Guo Liu

International audience Previously, we proved an identity for theta functions of degree eight, and several applications of it were also discussed. This identity is a natural extension of the addition formula for the Weierstrass sigma-function. In this paper we will use this identity to reexamine our work in theta function identities in the past two decades. Hundreds of results about elliptic modular functions, both classical and new, are derived from this identity with ease. Essentially, this general theta function identity is a theta identities generating machine. Our investigation shows that many well-known results about elliptic modular functions with different appearances due to Jacobi, Kiepert, Ramanujan and Weierstrass among others, actually share a common source. This paper can also be seen as a summary of my past work on theta function identities. A conjecture is also proposed.


1966 ◽  
Vol 9 (4) ◽  
pp. 515-516
Author(s):  
Paul G. Bassett

Let n be an arbitrary but fixed positive integer. Let Tn be the set of all monotone - increasing n-tuples of positive integers:1Define2In this note we prove that ϕ is a 1–1 mapping from Tn onto {1, 2, 3,…}.


Integers ◽  
2010 ◽  
Vol 10 (6) ◽  
Author(s):  
Hayri Ardal

AbstractThe well-known Brown's lemma says that for every finite coloring of the positive integers, there exist a fixed positive integer


2021 ◽  
Vol 6 (10) ◽  
pp. 10596-10601
Author(s):  
Yahui Yu ◽  
◽  
Jiayuan Hu ◽  

<abstract><p>Let $ k $ be a fixed positive integer with $ k &gt; 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).</p></abstract>


2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


2011 ◽  
Vol 07 (07) ◽  
pp. 1945-1957 ◽  
Author(s):  
TIM HUBER

We show that the cubic theta functions satisfy two distinct coupled systems of nonlinear differential equations. The resulting relations are analogous to Ramanujan's differential equations for Eisenstein series on the full modular group. We deduce the cubic analogs presented here from trigonometric series identities arising in Ramanujan's original paper on Eisenstein series. Several consequences of these differential equations are established, including a short proof of a famous cubic theta function identity derived by J. M. Borwein and P. B. Borwein.


1997 ◽  
Vol 20 (2) ◽  
pp. 409-411
Author(s):  
Vishnu Gupta

In this paper we prove that ifRis a ring with1as an identity element in whichxm−xn∈Z(R)for allx∈Rand fixed relatively prime positive integersmandn, one of which is even, thenRis commutative. Also we prove that ifRis a2-torsion free ring with1in which(x2k)n+1−(x2k)n∈Z(R)for allx∈Rand fixed positive integernand non-negative integerk, thenRis commutative.


Sign in / Sign up

Export Citation Format

Share Document