A p-ADIC LIMIT OF SIEGEL–EISENSTEIN SERIES OF PRIME LEVEL q

2008 ◽  
Vol 04 (05) ◽  
pp. 735-746 ◽  
Author(s):  
YOSHINORI MIZUNO

We show that a p-adic limit of a Siegel–Eisenstein series of prime level q becomes a Siegel modular form of level pq. This paper contains a simple formula for Fourier coefficients of a Siegel–Eisenstein series of degree two and prime levels.

2016 ◽  
Vol 28 (6) ◽  
Author(s):  
Siegfried Böcherer ◽  
Toshiyuki Kikuta

AbstractWe show that a Siegel modular form with integral Fourier coefficients in a number field


2002 ◽  
Vol 65 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Cris Poor ◽  
David S. Yuen

We study homomorphisms form the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that dim .


Author(s):  
Siegfried Böcherer ◽  
Soumya Das

Abstract We prove that if F is a nonzero (possibly noncuspidal) vector-valued Siegel modular form of any degree, then it has infinitely many nonzero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms. Further, as an application of a variant of our result and complementing the work of A. Pollack, we show how to obtain an unconditional proof of the functional equation of the spinor L-function of a holomorphic cuspidal Siegel eigenform of degree $3$ and level $1$ .


2018 ◽  
Vol 30 (6) ◽  
pp. 1437-1459 ◽  
Author(s):  
Yoshinori Mizuno

Abstract We study a real analytic Jacobi–Eisenstein series of matrix index and deduce several arithmetically interesting properties. In particular, we prove the followings: (a) Its Fourier coefficients are proportional to the average values of the Eisenstein series on higher-dimensional hyperbolic space. (b) The associated Dirichlet series of two variables coincides with those of Siegel, Shintani, Peter and Ueno. This makes it possible to investigate the Dirichlet series by means of techniques from modular form.


1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if


2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


2010 ◽  
Vol 13 ◽  
pp. 192-207 ◽  
Author(s):  
Christophe Ritzenthaler

AbstractLetkbe a field of characteristic other than 2. There can be an obstruction to a principally polarized abelian threefold (A,a) overk, which is a Jacobian over$\bar {k}$, being a Jacobian over k; this can be computed in terms of the rationality of the square root of the value of a certain Siegel modular form. We show how to do this explicitly for principally polarized abelian threefolds which are the third power of an elliptic curve with complex multiplication. We use our numerical results to prove or refute the existence of some optimal curves of genus 3.


2016 ◽  
Vol 234 ◽  
pp. 1-16
Author(s):  
SIEGFRIED BÖCHERER ◽  
WINFRIED KOHNEN

One can characterize Siegel cusp forms among Siegel modular forms by growth properties of their Fourier coefficients. We give a new proof, which works also for more general types of modular forms. Our main tool is to study the behavior of a modular form for $Z=X+iY$ when $Y\longrightarrow 0$.


2018 ◽  
Vol 49 (2) ◽  
pp. 391-409 ◽  
Author(s):  
Eren Mehmet Kıral ◽  
Matthew P. Young

Sign in / Sign up

Export Citation Format

Share Document