scholarly journals Criteria for p-ordinarity of families of elliptic curves over infinitely many number fields

2014 ◽  
Vol 11 (01) ◽  
pp. 81-87
Author(s):  
Nuno Freitas ◽  
Panagiotis Tsaknias

Let Ki be a number field for all i ∈ ℤ>0 and let ℰ be a family of elliptic curves containing infinitely many members defined over Ki for all i. Fix a rational prime p. We give sufficient conditions for the existence of an integer i0 such that, for all i > i0 and all elliptic curve E ∈ ℰ having good reduction at all 𝔭 | p in Ki, we have that E has good ordinary reduction at all primes 𝔭 | p. We illustrate our criteria by applying it to certain Frey curves in [Recipes to Fermat-type equations of the form xr + yr = Czp, to appear in Math. Z.; http://arXiv.org/abs/1203.3371 ] attached to Fermat-type equations of signature (r, r, p).

2002 ◽  
Vol 5 ◽  
pp. 7-17 ◽  
Author(s):  
Denis Simon

AbstractThis paper describes an algorithm of 2-descent for computing the rank of an elliptic curve without 2-torsion, defined over a general number field. This allows one, in practice, to deal with fields of degree from 1 to 5.


2017 ◽  
Vol 13 (04) ◽  
pp. 991-1001
Author(s):  
Christopher Rasmussen ◽  
Akio Tamagawa

Fix a number field [Formula: see text] and a rational prime [Formula: see text]. We consider abelian varieties whose [Formula: see text]-power torsion generates a pro-[Formula: see text] extension of [Formula: see text] which is unramified away from [Formula: see text]. It is a necessary, but not generally sufficient, condition that such varieties have good reduction away from [Formula: see text]. In the special case of [Formula: see text], we demonstrate that for abelian surfaces [Formula: see text], good reduction away from [Formula: see text] does suffice. The result is extended to elliptic curves and abelian surfaces over certain number fields unramified away from [Formula: see text]. An explicit example is constructed to demonstrate that good reduction away from [Formula: see text] is not sufficient, at [Formula: see text], for abelian varieties of sufficiently high dimension.


1986 ◽  
Vol 104 ◽  
pp. 43-53 ◽  
Author(s):  
Kay Wingberg

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa’s theory of Zp-extensions of number fields. In a special case they consider a non-cyclotomic Zp-extension F∞ defined via torsion points of E and a certain Iwasawa module attached to E/F, which can be interpreted as an abelian Galois group of an extension of F∞. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic Zp-extension (which is generated by torsion points of Gm).


Author(s):  
Antonio Lei ◽  
Meng Fai Lim

Let [Formula: see text] be an elliptic curve defined over a number field [Formula: see text] where [Formula: see text] splits completely. Suppose that [Formula: see text] has good reduction at all primes above [Formula: see text]. Generalizing previous works of Kobayashi and Sprung, we define multiply signed Selmer groups over the cyclotomic [Formula: see text]-extension of a finite extension [Formula: see text] of [Formula: see text] where [Formula: see text] is unramified. Under the hypothesis that the Pontryagin duals of these Selmer groups are torsion over the corresponding Iwasawa algebra, we show that the Mordell–Weil ranks of [Formula: see text] over a subextension of the cyclotomic [Formula: see text]-extension are bounded. Furthermore, we derive an aysmptotic formula of the growth of the [Formula: see text]-parts of the Tate–Shafarevich groups of [Formula: see text] over these extensions.


Author(s):  
Filip Najman ◽  
George C. Ţurcaş

In this paper we prove that for every integer [Formula: see text], there exists an explicit constant [Formula: see text] such that the following holds. Let [Formula: see text] be a number field of degree [Formula: see text], let [Formula: see text] be any rational prime that is totally inert in [Formula: see text] and [Formula: see text] any elliptic curve defined over [Formula: see text] such that [Formula: see text] has potentially multiplicative reduction at the prime [Formula: see text] above [Formula: see text]. Then for every rational prime [Formula: see text], [Formula: see text] has an irreducible mod [Formula: see text] Galois representation. This result has Diophantine applications within the “modular method”. We present one such application in the form of an Asymptotic version of Fermat’s Last Theorem that has not been covered in the existing literature.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2015 ◽  
Vol 11 (04) ◽  
pp. 1233-1257
Author(s):  
Tibor Backhausz ◽  
Gergely Zábrádi

Let E be an elliptic curve — defined over a number field K — without complex multiplication and with good ordinary reduction at all the primes above a rational prime p ≥ 5. We construct a pairing on the dual p∞-Selmer group of E over any strongly admissible p-adic Lie extension K∞/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois group G = Gal(K∞/K). Under some mild additional hypotheses, this gives an algebraic functional equation of the conjectured p-adic L-function. As an application, we construct completely faithful Selmer groups in case the p-adic Lie extension is obtained by adjoining the p-power division points of another non-CM elliptic curve A.


2018 ◽  
Vol 154 (10) ◽  
pp. 2045-2054
Author(s):  
Andrew Snowden ◽  
Jacob Tsimerman

Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius elements, and somewhere not potentially good reduction. We prove that any lisse sheaf of rank two possessing these properties comes from an elliptic curve.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2015 ◽  
Vol 160 (1) ◽  
pp. 167-189 ◽  
Author(s):  
PAUL POLLACK

AbstractLet E/Q be an elliptic curve with complex multiplication. We study the average size of τ(#E(Fp)) as p varies over primes of good ordinary reduction. We work out in detail the case of E: y2 = x3 − x, where we prove that $$\begin{equation} \sum_{\substack{p \leq x \\p \equiv 1\pmod{4}}} \tau(\#E({\bf{F}}_p)) \sim \left(\frac{5\pi}{16} \prod_{p > 2} \frac{p^4-\chi(p)}{p^2(p^2-1)}\right)x, \quad\text{as $x\to\infty$}. \end{equation}$$ Here χ is the nontrivial Dirichlet character modulo 4. The proof uses number field analogues of the Brun–Titchmarsh and Bombieri–Vinogradov theorems, along with a theorem of Wirsing on mean values of nonnegative multiplicative functions.Now suppose that E/Q is a non-CM elliptic curve. We conjecture that the sum of τ(#E(Fp)), taken over p ⩽ x of good reduction, is ~cEx for some cE > 0, and we give a heuristic argument suggesting the precise value of cE. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that this sum is ≍Ex. The proof uses combinatorial ideas of Erdős.


Sign in / Sign up

Export Citation Format

Share Document