scholarly journals Computing the Rank of Elliptic Curves over Number Fields

2002 ◽  
Vol 5 ◽  
pp. 7-17 ◽  
Author(s):  
Denis Simon

AbstractThis paper describes an algorithm of 2-descent for computing the rank of an elliptic curve without 2-torsion, defined over a general number field. This allows one, in practice, to deal with fields of degree from 1 to 5.

1986 ◽  
Vol 104 ◽  
pp. 43-53 ◽  
Author(s):  
Kay Wingberg

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa’s theory of Zp-extensions of number fields. In a special case they consider a non-cyclotomic Zp-extension F∞ defined via torsion points of E and a certain Iwasawa module attached to E/F, which can be interpreted as an abelian Galois group of an extension of F∞. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic Zp-extension (which is generated by torsion points of Gm).


2014 ◽  
Vol 11 (01) ◽  
pp. 81-87
Author(s):  
Nuno Freitas ◽  
Panagiotis Tsaknias

Let Ki be a number field for all i ∈ ℤ>0 and let ℰ be a family of elliptic curves containing infinitely many members defined over Ki for all i. Fix a rational prime p. We give sufficient conditions for the existence of an integer i0 such that, for all i > i0 and all elliptic curve E ∈ ℰ having good reduction at all 𝔭 | p in Ki, we have that E has good ordinary reduction at all primes 𝔭 | p. We illustrate our criteria by applying it to certain Frey curves in [Recipes to Fermat-type equations of the form xr + yr = Czp, to appear in Math. Z.; http://arXiv.org/abs/1203.3371 ] attached to Fermat-type equations of signature (r, r, p).


Author(s):  
Filip Najman ◽  
George C. Ţurcaş

In this paper we prove that for every integer [Formula: see text], there exists an explicit constant [Formula: see text] such that the following holds. Let [Formula: see text] be a number field of degree [Formula: see text], let [Formula: see text] be any rational prime that is totally inert in [Formula: see text] and [Formula: see text] any elliptic curve defined over [Formula: see text] such that [Formula: see text] has potentially multiplicative reduction at the prime [Formula: see text] above [Formula: see text]. Then for every rational prime [Formula: see text], [Formula: see text] has an irreducible mod [Formula: see text] Galois representation. This result has Diophantine applications within the “modular method”. We present one such application in the form of an Asymptotic version of Fermat’s Last Theorem that has not been covered in the existing literature.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2017 ◽  
Vol 13 (07) ◽  
pp. 1881-1894 ◽  
Author(s):  
Jesse Patsolic ◽  
Jeremy Rouse

Given a quintic number field K/ℚ, we study the set of irreducible trinomials, polynomials of the form x5 + ax + b, that have a root in K. We show that there is a genus 4 curve CK whose rational points are in bijection with such trinomials. This curve CK maps to an elliptic curve defined over a number field, and using this map, we are able (in some cases) to determine all the rational points on CK using elliptic curve Chabauty.


2014 ◽  
Vol 57 (2) ◽  
pp. 465-473 ◽  
Author(s):  
FILIP NAJMAN

AbstractLet p be a prime and K a number field of degree p. We determine the finiteness of the number of elliptic curves, up to K-isomorphism, having a prescribed property, where this property is either that the curve contains a fixed torsion group as a subgroup or that it has a cyclic isogeny of prescribed degree.


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


2010 ◽  
Vol 53 (1) ◽  
pp. 207-210
Author(s):  
CRISTIAN VIRDOL

Let E be an elliptic curve defined over a number field F, and let Σ be a finite set of finite places of F. Let L(s, E, ψ) be the L-function of E twisted by a finite-order Hecke character ψ of F. It is conjectured that L(s, E, ψ) has a meromorphic continuation to the entire complex plane and satisfies a functional equation s ↔ 2 − s. Then one can define the so called minimal order of vanishing ats = 1 of L(s, E, ψ), denoted by m(E, ψ) (see Section 2 for the definition).


2009 ◽  
Vol 59 (3) ◽  
Author(s):  
E. Girondo ◽  
G. González-Diez ◽  
E. González-Jiménez ◽  
R. Steuding ◽  
J. Steuding

AbstractGiven any positive integer n, we prove the existence of infinitely many right triangles with area n and side lengths in certain number fields. This generalizes the famous congruent number problem. The proof allows the explicit construction of these triangles; for this purpose we find for any positive integer n an explicit cubic number field ℚ(λ) (depending on n) and an explicit point P λ of infinite order in the Mordell-Weil group of the elliptic curve Y 2 = X 3 − n 2 X over ℚ(λ).


2013 ◽  
Vol 13 (3) ◽  
pp. 517-559 ◽  
Author(s):  
Eric Larson ◽  
Dmitry Vaintrob

AbstractGiven an abelian variety $A$ of dimension $g$ over a number field $K$, and a prime $\ell $, the ${\ell }^{n} $-torsion points of $A$ give rise to a representation ${\rho }_{A, {\ell }^{n} } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ( \mathbb{Z} / {\ell }^{n} \mathbb{Z} )$. In particular, we get a mod-$\ell $representation ${\rho }_{A, \ell } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{F} }_{\ell } )$ and an $\ell $-adic representation ${\rho }_{A, {\ell }^{\infty } } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{Z} }_{\ell } )$. In this paper, we describe the possible determinants of subquotients of these two representations. These two lists turn out to be remarkably similar.Applying our results in dimension $g= 1$, we recover a generalized version of a theorem of Momose on isogeny characters of elliptic curves over number fields, and obtain, conditionally on the Generalized Riemann Hypothesis, a generalization of Mazur’s bound on rational isogenies of prime degree to number fields.


Sign in / Sign up

Export Citation Format

Share Document