scholarly journals On pairs of quadratic forms in five variables

Author(s):  
Kummari Mallesham

In this paper, we obtain an upper bound for the number of integral solutions, of given height, of system of two quadratic forms in five variables. Our bound is an improvement over the bound given in [H. Iwaniec and R. Munshi, The circle method and pairs of quadratic forms, J. Théor. Nr. Bordx. 22 (2010) 403–419].

2013 ◽  
Vol 22 (13) ◽  
pp. 1350072
Author(s):  
PRADTHANA JAIPONG

Let M be a compact, connected, irreducible, orientable 3-manifold with torus boundary. A closed, orientable, immersed, incompressible surface F in M with no incompressible annulus joining F and ∂M compresses in at most finitely many Dehn fillings M(α). It is known that there is no universal upper bound on the number of such fillings, independent of the surface, and the figure-eight knot complement is the first example of a manifold where this phenomenon occurs. In this paper, we show that the same behavior of the figure-eight knot complement is shared by other two cusped manifolds.


2010 ◽  
Vol 22 (2) ◽  
pp. 403-419 ◽  
Author(s):  
Henryk Iwaniec ◽  
Ritabrata Munshi

10.37236/9712 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Gábor Hegedüs ◽  
Lajos Rónyai

In a recent paper, Petrov and Pohoata developed a new algebraic method which combines the Croot-Lev-Pach Lemma from additive combinatorics and Sylvester’s Law of Inertia for real quadratic forms. As an application, they gave a simple proof of the Bannai-Bannai-Stanton bound on the size of $s$-distance sets (subsets $\mathcal{A}\subseteq \mathbb{R}^n$ which determine at most $s$ different distances). In this paper we extend their work and prove upper bounds for the size of $s$-distance sets in various real algebraic sets. This way we obtain a novel and short proof for the bound of Delsarte-Goethals-Seidel on spherical s-distance sets and a generalization of a bound by Bannai-Kawasaki-Nitamizu-Sato on $s$-distance sets on unions of spheres. In our arguments we use the method of Petrov and Pohoata together with some Gröbner basis techniques.


2019 ◽  
Vol 69 (1) ◽  
pp. 87-98
Author(s):  
Ketevan Shavgulidze

Abstract An upper bound of the dimension of vector spaces of generalized theta-series corresponding to some nondiagonal quadratic forms in any number of variables is established. In a number of cases, an upper bound of the dimension of the space of theta-series with respect to the quadratic forms of five variables is improved and the basis of this space is constructed.


1979 ◽  
Vol 74 ◽  
pp. 95-122 ◽  
Author(s):  
Yoshiyuki Kitaoka

Let A(m), B(n) be positive definite integral matrices and suppose that B is represented by A over each p-adic integers ring Zp. Using the circle method or theory of modular forms in case of n = 1, B, if sufficiently large, is represented by A provided that m ≥ 5. The approach via the theory of modular forms has been extended by [7] to Siegel modular forms to obtain a partial result in the particular case when n = 2, m ≥ 7.


1996 ◽  
Vol 39 (2) ◽  
pp. 199-202 ◽  
Author(s):  
Al-Zaid Hassan ◽  
B. Brindza ◽  
Á. Pintér

AbstractAs it had been recognized by Liouville, Hermite, Mordell and others, the number of non-negative integer solutions of the equation in the title is strongly related to the class number of quadratic forms with discriminant —n. The purpose of this note is to point out a deeper relation which makes it possible to derive a reasonable upper bound for the number of solutions.


1996 ◽  
Vol 142 ◽  
pp. 95-132 ◽  
Author(s):  
Boris A. Datskovsky

For an integer d > 0 (resp. d < 0) let hd denote the number of Sl2(Z)-equivalence classes of primitive (resp. primitive positive-definite) integral binary quadratic forms of discriminant d. For where t and u are the smallest positive integral solutions of the equation t2 − du2 = 4 if d is a non-square and εd = 1 if d is a square.


1971 ◽  
Vol 12 (2) ◽  
pp. 224-238 ◽  
Author(s):  
R. T. Worley

In a paper [1] of the same title Barnes considered the problem of finding an upper bound for the infimum m+(f) of the non-negative values1 of an indefinite quadratic form f in n variables, of given determinant det(f) ≠ 0 and of signature s. In particular it was announced (and later proved — see [2]) that m+(f) ≦ (16/5)+ for ternary quadratic forms of determinant 1 and signature — 1. A simple consequence of this result is that m+(f) ≦ (256/135)+ for quaternary quadratic forms of determinant — 1 and signature — 2.


Sign in / Sign up

Export Citation Format

Share Document