On Gauss sums over dedekind domains

Author(s):  
Zhiyong Zheng ◽  
Man Chen ◽  
Jie Xu

It is a difficult question to generalize Gauss sums to a ring of algebraic integers of an arbitrary algebraic number field. In this paper, we define and discuss Gauss sums over a Dedekind domain of finite norm. In particular, we give a Davenport–Hasse type formula for some special Gauss sums. As an application, we give some more precise formulas for Gauss sums over the algebraic integer ring of an algebraic number field (see Theorems 4.1 and 4.2).

2017 ◽  
Vol 13 (10) ◽  
pp. 2505-2514 ◽  
Author(s):  
Anuj Jakhar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].


2008 ◽  
Vol 04 (06) ◽  
pp. 1019-1025 ◽  
Author(s):  
SUDESH K. KHANDUJA ◽  
MUNISH KUMAR

Let K = ℚ(θ) be an algebraic number field with θ in the ring AK of algebraic integers of K and f(x) be the minimal polynomial of θ over the field ℚ of rational numbers. For a rational prime p, let [Formula: see text] be the factorization of the polynomial [Formula: see text] obtained by replacing each coefficient of f(x) modulo p into product of powers of distinct monic irreducible polynomials over ℤ/pℤ. Dedekind proved that if p does not divide [AK : ℤ[θ]], then the factorization of pAK as a product of powers of distinct prime ideals is given by [Formula: see text], with 𝔭i = pAK + gi(θ)AK, and residual degree [Formula: see text]. In this paper, we prove that if the factorization of a rational prime p in AK satisfies the above-mentioned three properties, then p does not divide [AK:ℤ[θ]]. Indeed the analogue of the converse is proved for general Dedekind domains. The method of proof leads to a generalization of one more result of Dedekind which characterizes all rational primes p dividing the index of K.


1988 ◽  
Vol 53 (2) ◽  
pp. 470-480 ◽  
Author(s):  
Masahiro Yasumoto

LetKbe an algebraic number field andIKthe ring of algebraic integers inK. *Kand *IKdenote enlargements ofKandIKrespectively. LetxЄ *K–K. In this paper, we are concerned with algebraic extensions ofK(x)within *K. For eachxЄ *K–Kand each natural numberd, YK(x,d)is defined to be the number of algebraic extensions ofK(x)of degreedwithin *K.xЄ *K–Kis called a Hilbertian element ifYK(x,d)= 0 for alldЄ N,d> 1; in other words,K(x)has no algebraic extension within *K. In their paper [2], P. C. Gilmore and A. Robinson proved that the existence of a Hilbertian element is equivalent to Hilbert's irreducibility theorem. In a previous paper [9], we gave many Hilbertian elements of nonstandard integers explicitly, for example, for any nonstandard natural numberω, 2ωPωand 2ω(ω3+ 1) are Hilbertian elements in*Q, where pωis theωth prime number.


1969 ◽  
Vol 12 (4) ◽  
pp. 453-455 ◽  
Author(s):  
Klaus W. Roggenkamp

K = algebraic number field,R = algebraic integers in K,A = finite dimensional semi-simple K-algebra, A. = simple K-algebra,i = 1,…, n,Ki = center of Ai, = 1,…, n,G = R-order in A,Ri = G ∩ ki.All modules under consideration are finitely generated left modules. A G-lattice is a G-module which is R-torsion-free.


1980 ◽  
Vol 29 (4) ◽  
pp. 385-392 ◽  
Author(s):  
G. Karpilovsky

AbstractLet Out (RG) be the set of all outer R-automorphisms of a group ring RG of arbitrary group G over a commutative ring R with 1. It is proved that there is a bijective correspondence between the set Out (RG) and a set consisting of R(G × G)-isomorphism classes of R-free R(G × G)-modules of a certain type. For the case when G is finite and R is the ring of algebraic integers of an algebraic number field the above result implies that there are only finitely many conjugacy classes of group bases in RG. A generalization of a result due to R. Sandling is also provided.


2018 ◽  
Vol 17 (05) ◽  
pp. 1850087
Author(s):  
Dmitry Malinin

We consider the arithmetic of integral representations of finite groups over algebraic integers and the generalization of globally irreducible representations introduced by Van Oystaeyen and Zalesskii. For the ring of integers [Formula: see text] of an algebraic number field [Formula: see text] we are interested in the question: what are the conditions for subgroups [Formula: see text] such that [Formula: see text], the [Formula: see text]-span of [Formula: see text], coincides with [Formula: see text], the ring of [Formula: see text]-matrices over [Formula: see text], and what are the minimal realization fields.


1971 ◽  
Vol 12 (3) ◽  
pp. 351-357 ◽  
Author(s):  
M. R. Freislich

Let F be an algebraic number field, and S a subgroup of the general linear group GL(n, F). We shall call S a U-group if S satisfies the condition (U): Every x ∈ S is a matrix all of whose eigenvalues are algebraic integers. (This is equivalent to either of the following conditions: a) the eigenvalues of each matrix (x are all units as algebraic numbers; b) the characteristic polynomial for x has all its coefficients integers in F. In particular, then, every group of matrices with entries in the integers of F is a U-group.


1963 ◽  
Vol 3 (4) ◽  
pp. 408-434 ◽  
Author(s):  
K. Mahler

In his Topics in Number Theory, vol. 2, chapter 2 (Reading, Mass., 1956) W. J. LeVeque proved an important generalisation of Roth's theorem (K. F. Roth, Mathematika 2,1955, 1—20).Let ξ be a fixed algebraic number, σ a positive constant, and K an algebraic number field of degree n. For κ∈K denote by κ(1), …, κ(n) the conjugates of κ relative to K, by h(κ) the smallest positive integer such that the polynomial has rational integral coefficients, and by q(κ) the quantity


Sign in / Sign up

Export Citation Format

Share Document