scholarly journals On some properties of group rings

1980 ◽  
Vol 29 (4) ◽  
pp. 385-392 ◽  
Author(s):  
G. Karpilovsky

AbstractLet Out (RG) be the set of all outer R-automorphisms of a group ring RG of arbitrary group G over a commutative ring R with 1. It is proved that there is a bijective correspondence between the set Out (RG) and a set consisting of R(G × G)-isomorphism classes of R-free R(G × G)-modules of a certain type. For the case when G is finite and R is the ring of algebraic integers of an algebraic number field the above result implies that there are only finitely many conjugacy classes of group bases in RG. A generalization of a result due to R. Sandling is also provided.

2017 ◽  
Vol 13 (10) ◽  
pp. 2505-2514 ◽  
Author(s):  
Anuj Jakhar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].


1988 ◽  
Vol 53 (2) ◽  
pp. 470-480 ◽  
Author(s):  
Masahiro Yasumoto

LetKbe an algebraic number field andIKthe ring of algebraic integers inK. *Kand *IKdenote enlargements ofKandIKrespectively. LetxЄ *K–K. In this paper, we are concerned with algebraic extensions ofK(x)within *K. For eachxЄ *K–Kand each natural numberd, YK(x,d)is defined to be the number of algebraic extensions ofK(x)of degreedwithin *K.xЄ *K–Kis called a Hilbertian element ifYK(x,d)= 0 for alldЄ N,d> 1; in other words,K(x)has no algebraic extension within *K. In their paper [2], P. C. Gilmore and A. Robinson proved that the existence of a Hilbertian element is equivalent to Hilbert's irreducibility theorem. In a previous paper [9], we gave many Hilbertian elements of nonstandard integers explicitly, for example, for any nonstandard natural numberω, 2ωPωand 2ω(ω3+ 1) are Hilbertian elements in*Q, where pωis theωth prime number.


Author(s):  
Zhiyong Zheng ◽  
Man Chen ◽  
Jie Xu

It is a difficult question to generalize Gauss sums to a ring of algebraic integers of an arbitrary algebraic number field. In this paper, we define and discuss Gauss sums over a Dedekind domain of finite norm. In particular, we give a Davenport–Hasse type formula for some special Gauss sums. As an application, we give some more precise formulas for Gauss sums over the algebraic integer ring of an algebraic number field (see Theorems 4.1 and 4.2).


Author(s):  
Naoya Takahashi

For an algebraic number field [Formula: see text] and a prime number [Formula: see text], let [Formula: see text] be the maximal multiple [Formula: see text]-extension. Greenberg’s generalized conjecture (GGC) predicts that the Galois group of the maximal unramified abelian pro-[Formula: see text] extension of [Formula: see text] is pseudo-null over the completed group ring [Formula: see text]. We show that GGC holds for some imaginary quartic fields containing imaginary quadratic fields and some prime numbers.


1966 ◽  
Vol 27 (2) ◽  
pp. 429-433 ◽  
Author(s):  
Masaru Osima

We consider a group G of finite order g = pag′ where p is a prime number and (p, g′) = 1. Let Ω be the algebraic number field which contains the p-th roots of unity. Let K1, K2,…, Kn be the classes of conjugate elements in G and the first m(≦n) classes be p-regular. There exist n distinct (absolutely) irreducible characters x1, x2,…, xn of G.


1988 ◽  
Vol 112 ◽  
pp. 1-24 ◽  
Author(s):  
Takayuki Hibi

Our dream is to revive the ideal theory in partially ordered sets from a viewpoint of commutative algebra.Historically, the concept of ideals in commutative algebra was first studied by Dedekind, who considered the ring of algebraic integers in an algebraic number field.


1965 ◽  
Vol 17 ◽  
pp. 583-593 ◽  
Author(s):  
James A. Cohn ◽  
Donald Livingstone

With this paper we begin a study of the structure of the group algebra RG of a finite group G over the ring of algebraic integers R in an algebraic number field k. The basic question is whether non-isomorphic groups can have isomorphic algebras over R. We shall show that this is impossible if G is (a) abelian,(b) Hamiltonian,(c) one of a special class of p-groups.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Juraj Kostra

AbstractLet K be a tamely ramified cyclic algebraic number field of prime degree l. In the paper one-to-one correspondence between all orders of K with a normal basis and all ideals of K with a normal basis is given.


Sign in / Sign up

Export Citation Format

Share Document