Optimal control homotopy perturbation method for cancer model

2019 ◽  
Vol 12 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Malihe Najafi ◽  
Hadi Basirzadeh

In this paper, we introduced the optimal control homotopy perturbation method (OCHPM) by using the homotopy perturbation method (HPM). Every one, by using of the proposed method, can obtain numerical solutions of mathematical modeling for cancer-immunotherapy. In this paper, in order to prove the preciseness and efficiency of the OCHPM method, we compared the obtained numerical solutions with HPM. The results obtained showed that the OCHPM method is powerful to generate the numerical solutions for some therapeutic models.

2011 ◽  
Vol 110-116 ◽  
pp. 2277-2283 ◽  
Author(s):  
Xiang Meng Zhang ◽  
Ben Li Wang ◽  
Xian Ren Kong ◽  
A Yang Xiao

In this paper, He’s homotopy perturbation method (HPM) is applied to solve harmonically forced Duffing systems. Non-resonance of an undamped Duffing system and the primary resonance of a damped Duffing system are studied. In the former case, the first-order analytical approximations to the system’s natural frequency and periodic solution are derived by HPM, which agree well with the numerical solutions. In the latter case, based on HPM, the first-order approximate solution and the frequency-amplitude curves of the system are acquired. The results reveal that HPM is an effective technique to the forced Duffing systems.


The homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed A. Khidir

We present a new modification of the homotopy perturbation method (HPM) for solving nonlinear boundary value problems. The technique is based on the standard homotopy perturbation method, and blending of the Chebyshev pseudospectral methods. The implementation of the new approach is demonstrated by solving the Jeffery-Hamel flow considering the effects of magnetic field and nanoparticle. Comparisons are made between the proposed technique, the standard homotopy perturbation method, and the numerical solutions to demonstrate the applicability, validity, and high accuracy of the present approach. The results demonstrate that the new modification is more efficient and converges faster than the standard homotopy perturbation method.


Sign in / Sign up

Export Citation Format

Share Document