scholarly journals Balanced finite presentations of the trivial group

2017 ◽  
Vol 09 (02) ◽  
pp. 363-378 ◽  
Author(s):  
Boris Lishak

We construct a sequence of balanced finite presentations of the trivial group with two generators and two relators with the following property: The minimal number of relations required to demonstrate that a generator represents the trivial element grows faster than the tower of exponentials of any fixed height of the length of the finite presentation.

1975 ◽  
Vol 19 (3) ◽  
pp. 297-305 ◽  
Author(s):  
C. M. Campbell ◽  
E. F. Robertson

Let G be a finitely presented group. A finite presentation P of G is said to have defiency m – n if it defines G with m generators and n relations. The deficiency of G is the maximum of the deficiencies of all the finite presentations P of G. If G is finite the deficiency of G is less than or equal to zero. The only finite two generator groups of deficiency zero that are known are certain metacyclic groups given by Wamsley (1970), a class of nilpotent groups given by Macdonald in (1962) and a class of groups given by Wamsley (1972).


2019 ◽  
Vol 11 (02) ◽  
pp. 311-347 ◽  
Author(s):  
Boris Lishak ◽  
Alexander Nabutovsky

Let [Formula: see text] be any compact four-dimensional PL-manifold with or without boundary (e.g. the four-dimensional sphere or ball). Consider the space [Formula: see text] of all simplicial isomorphism classes of triangulations of [Formula: see text] endowed with the metric defined as follows: the distance between a pair of triangulations is the minimal number of bistellar transformations required to transform one of the triangulations into the other. Our main result is the existence of an absolute constant [Formula: see text] such that for every [Formula: see text] and all sufficiently large [Formula: see text] there exist more than [Formula: see text] triangulations of [Formula: see text] with at most [Formula: see text] simplices such that pairwise distances between them are greater than [Formula: see text] ([Formula: see text] times). This result follows from a similar result for the space of all balanced presentations of the trivial group. (“Balanced” means that the number of generators equals to the number of relations). This space is endowed with the metric defined as the minimal number of Tietze transformations between finite presentations. We prove a similar exponential lower bound for the number of balanced presentations of length [Formula: see text] with four generators that are pairwise [Formula: see text]-far from each other. If one does not fix the number of generators, then we establish a super-exponential lower bound [Formula: see text] for the number of balanced presentations of length [Formula: see text] that are [Formula: see text]-far from each other.


1988 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Peter Symonds

If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of certain H-projective lattices must be divisible by some specified number, generalizing some well-known results: cf. Corollary 3·6. If for example we take R = ℤ, then |G/H| divides the ℤ-rank of any H-projective ℤG-lattice.


2001 ◽  
Vol 242 (2) ◽  
pp. 672-690 ◽  
Author(s):  
Alexander Lubotzky
Keyword(s):  

1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 240
Author(s):  
Mario De Salvo ◽  
Dario Fasino ◽  
Domenico Freni ◽  
Giovanni Lo Faro

Hypergroups can be subdivided into two large classes: those whose heart coincide with the entire hypergroup and those in which the heart is a proper sub-hypergroup. The latter class includes the family of 1-hypergroups, whose heart reduces to a singleton, and therefore is the trivial group. However, very little is known about hypergroups that are neither 1-hypergroups nor belong to the first class. The goal of this work is to take a first step in classifying G-hypergroups, that is, hypergroups whose heart is a nontrivial group. We introduce their main properties, with an emphasis on G-hypergroups whose the heart is a torsion group. We analyze the main properties of the stabilizers of group actions of the heart, which play an important role in the construction of multiplicative tables of G-hypergroups. Based on these results, we characterize the G-hypergroups that are of type U on the right or cogroups on the right. Finally, we present the hyperproduct tables of all G-hypergroups of size not larger than 5, apart of isomorphisms.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Let us consider the prime field of two elements, $\mathbb F_2.$ One of the open problems in Algebraic topology is the hit problem for a module over the mod 2 Steenrod algebra $\mathscr A$. More specifically, this problem asks a minimal set of generators for the polynomial algebra $\mathcal P_m:=\mathbb F_2[x_1, x_2, \ldots, x_m]$ regarded as a connected unstable $\mathscr A$-module on $m$ variables $x_1, \ldots, x_m,$ each of degree one. The algebra $\mathcal P_m$ is the cohomology with $\mathbb F_2$-coefficients of the product of $m$ copies of the Eilenberg-MacLan space of type $(\mathbb F_2, 1).$ The hit problem has been thoroughly studied for 35 years in a variety of contexts by many authors and completely solved for $m\leq 4.$ Furthermore, it has been closely related to some classical problems in the homotopy theory and applied in studying the $m$-th Singer algebraic transfer $Tr^{\mathscr A}_m$ \cite{W.S1}. This transfer is one of the useful tools for studying the Adams $E^{2}$-term, ${\rm Ext}_{\mathscr A}^{*, *}(\mathbb F_2, \mathbb F_2) = H^{*, *}(\mathscr A, \mathbb F_2).$The aim of this work is to continue our study of the hit problem of five variables. At the same time, this result will be applied to the investigation of the fifth transfer of Singer and the modular representation of the general linear group of rank 5 over $\mathbb F_2.$ More precisely, we grew out of a previous result of us in \cite{D.P3} on the hit problem for $\mathscr A$-module $\mathcal P_5$ in the generic degree $5(2^t-1) + 18.2^t$ with $t$ an arbitrary non-negative integer. The result confirms Sum's conjecture \cite{N.S2} on the relation between the minimal set of $\mathscr A$-generators for the polynomial algebras $\mathcal P_{m-1}$ and $\mathcal P_{m}$ in the case $m=5$ and the above generic degree. Moreover, by using our result \cite{D.P3} and a presentation in the $\lambda$-algebra of $Tr_5^{\mathscr A}$, we show that the non-trivial element $h_1e_0 = h_0f_0\in {\rm Ext}_{\mathscr A}^{5, 5+(5(2^0-1) + 18.2^0)}(\mathbb F_2, \mathbb F_2)$ is in the image of the fifth transfer and that $Tr^{\mathscr A}_5$ is an isomorphism in the bidegree $(5, 5+(5(2^0-1) + 18.2^0)).$ In addition, the behavior of $Tr^{\mathscr A}_5$ in the bidegree $(5, 5+(5(2^t-1) + 18.2^t))$ when $t\geq 1$ was also discussed. This method is different from that of Singer in studying the image of the algebraic transfer.


Sign in / Sign up

Export Citation Format

Share Document