Continuous wavelet transform involving canonical convolution

2019 ◽  
Vol 13 (06) ◽  
pp. 2050104
Author(s):  
Zamir Ahmad Ansari

The main objective of this paper is to study the continuous wavelet transform in terms of canonical convolution and its adjoint. A relation between the canonical convolution operator and inverse linear canonical transform is established. The continuity of continuous wavelet transform on test function space is discussed.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1106
Author(s):  
Jagdish N. Pandey

We define a testing function space DL2(Rn) consisting of a class of C∞ functions defined on Rn, n≥1 whose every derivtive is L2(Rn) integrable and equip it with a topology generated by a separating collection of seminorms {γk}|k|=0∞ on DL2(Rn), where |k|=0,1,2,… and γk(ϕ)=∥ϕ(k)∥2,ϕ∈DL2(Rn). We then extend the continuous wavelet transform to distributions in DL2′(Rn), n≥1 and derive the corresponding wavelet inversion formula interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is defined by an element ψ(x) of DL2(Rn)∩DL1(Rn), n≥1 which, when integrated along each of the real axes X1,X2,…Xn vanishes, but none of its moments ∫Rnxmψ(x)dx is zero; here xm=x1m1x2m2⋯xnmn, dx=dx1dx2⋯dxn and m=(m1,m2,…mn) and each of m1,m2,…mn is ≥1. The set of such wavelets will be denoted by DM(Rn).


Author(s):  
Akhilesh Prasad ◽  
S. K. Verma

The continuous wavelet transform (CWT) associated with zero-order Mehler–Fock transform (MF-transform) is defined and discussed its some basic properties, Plancherel’s and Parseval’s relations, reconstruction formula for CWT are obtained. Further composition of CWT is investigated and then its Parseval’s and Plancherel’s relations are given. Moreover, time-invariant filter has been defined and proved convolution operator and wavelet transform are represented as time-invariant transform.


Sign in / Sign up

Export Citation Format

Share Document