A graph associated to centralizer of elements of a group

Author(s):  
Farangis Johari ◽  
Kazem Khashyarmanesh

For a given nonabelian finite group [Formula: see text] and [Formula: see text] where [Formula: see text] denotes the center of [Formula: see text] we introduce a new graph [Formula: see text] associated to the group [Formula: see text] as follows: Take [Formula: see text] as its vertex set and two distinct vertices [Formula: see text] and [Formula: see text] being adjacent if and only if there exists an element [Formula: see text] such that [Formula: see text] This paper is devoted to investigate the properties of graphs [Formula: see text] and establish some graph theoretical properties. Moreover, we describe the planarity of these graphs when [Formula: see text] Also, we provide some examples of finite nonabelian groups [Formula: see text] with the property that if [Formula: see text] and [Formula: see text] for some group [Formula: see text] and [Formula: see text] then [Formula: see text]

2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
M. Jahandideh ◽  
M. R. Darafsheh ◽  
N. H. Sarmin ◽  
S. M. S. Omer

Abstract - Let G􀡳 be a non- abelian finite group. The non-commuting graph ,􀪡is defined as a graph with a vertex set􀡳 − G-Z(G)􀢆in which two vertices x􀢞 and y􀢟 are joined if and only if xy􀢞􀢟 ≠ yx􀢟􀢞.  In this paper, we invest some results on the number of edges set , the degree of avertex of non-commuting graph and the number of conjugacy classes of a finite group. In order that if 􀪡􀡳non-commuting graph of H ≅ non - commuting graph of G􀪡􀡴,H 􀡴 is afinite group, then |G􀡳| = |H􀡴| .


2021 ◽  
Vol 19 (1) ◽  
pp. 850-862
Author(s):  
Huani Li ◽  
Xuanlong Ma ◽  
Ruiqin Fu

Abstract The intersection power graph of a finite group G G is the graph whose vertex set is G G , and two distinct vertices x x and y y are adjacent if either one of x x and y y is the identity element of G G , or ⟨ x ⟩ ∩ ⟨ y ⟩ \langle x\rangle \cap \langle y\rangle is non-trivial. In this paper, we completely classify all finite groups whose intersection power graphs are toroidal and projective-planar.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
M. Mirzargar ◽  
A.R. Ashrafi ◽  
M.J. Nadjafi-Arani

The power graph P(G) of a group G is the graph whose vertex set is the group elements and two elements are adjacent if one is a power of the other. In this paper, we consider some graph theoretical properties of a power graph P(G) that can be related to its group theoretical properties. As consequences of our results, simple proofs for some earlier results are presented.


1964 ◽  
Vol 16 ◽  
pp. 485-489 ◽  
Author(s):  
J. W. Moon

The set of all adjacency-preserving automorphisms of the vertex set of a graph form a group which is called the (automorphism) group of the graph. In 1938 Frucht (2) showed that every finite group is isomorphic to the group of some graph. Since then Frucht, Izbicki, and Sabidussi have considered various other properties that a graph having a given group may possess. (For pertinent references and definitions not given here see Ore (4).) The object in this paper is to treat by similar methods a corresponding problem for a class of oriented graphs. It will be shown that a finite group is isomorphic to the group of some complete oriented graph if and only if it has an odd number of elements.


Author(s):  
Xuanlong Ma

Let [Formula: see text] be a finite group. The power graph of [Formula: see text] is the undirected graph whose vertex set is [Formula: see text], and two distinct vertices are adjacent if one is a power of the other. The reduced power graph of [Formula: see text] is the subgraph of the power graph of [Formula: see text] obtained by deleting all edges [Formula: see text] with [Formula: see text], where [Formula: see text] and [Formula: see text] are two distinct elements of [Formula: see text]. In this paper, we determine the proper connection number of the reduced power graph of [Formula: see text]. As an application, we also determine the proper connection number of the power graph of [Formula: see text].


Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


2012 ◽  
Vol 04 (02) ◽  
pp. 1250035 ◽  
Author(s):  
A. ERFANIAN ◽  
B. TOLUE

In this paper we introduce the conjugate graph [Formula: see text] associated to a nonabelian group G with vertex set G\Z(G) such that two distinct vertices join by an edge if they are conjugate. We show if [Formula: see text], where S is a finite nonabelian simple group which satisfy Thompson's conjecture, then G ≅ S. Further, if central factors of two nonabelian groups H and G are isomorphic and |Z(G)| = |Z(H)|, then H and G have isomorphic conjugate graphs.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350064 ◽  
Author(s):  
M. AKBARI ◽  
A. R. MOGHADDAMFAR

We consider the non-commuting graph ∇(G) of a non-abelian finite group G; its vertex set is G\Z(G), the set of non-central elements of G, and two distinct vertices x and y are joined by an edge if [x, y] ≠ 1. We determine the structure of any finite non-abelian group G (up to isomorphism) for which ∇(G) is a complete multipartite graph (see Propositions 3 and 4). It is also shown that a non-commuting graph is a strongly regular graph if and only if it is a complete multipartite graph. Finally, it is proved that there is no non-abelian group whose non-commuting graph is self-complementary and n-cube.


Sign in / Sign up

Export Citation Format

Share Document