nonabelian simple group
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2016 ◽  
Vol 15 (09) ◽  
pp. 1650163
Author(s):  
Tian-Ze Li ◽  
Yan-Jun Liu

Let [Formula: see text] be a prime. The Sylow [Formula: see text]-number of a finite group [Formula: see text], which is the number of Sylow [Formula: see text]-subgroups of [Formula: see text], is called solvable if its [Formula: see text]-part is congruent to [Formula: see text] modulo [Formula: see text] for any prime [Formula: see text]. P. Hall showed that solvable groups only have solvable Sylow numbers, and M. Hall showed that the Sylow [Formula: see text]-number of a finite group is the product of two kinds of factors: of prime powers [Formula: see text] with [Formula: see text] (mod [Formula: see text]) and of the number of Sylow [Formula: see text]-subgroups in certain finite simple groups (involved in [Formula: see text]). These classical results lead to the investigation of solvable Sylow numbers of finite simple groups. In this paper, we show that a finite nonabelian simple group has only solvable Sylow numbers if and only if it is isomorphic to [Formula: see text] for [Formula: see text] a Mersenne prime.


2015 ◽  
Vol 3 ◽  
Author(s):  
MICHAEL LARSEN ◽  
PHAM HUU TIEP

Let $w_{1}$ and $w_{2}$ be nontrivial words in free groups $F_{n_{1}}$ and $F_{n_{2}}$, respectively. We prove that, for all sufficiently large finite nonabelian simple groups $G$, there exist subsets $C_{1}\subseteq w_{1}(G)$ and $C_{2}\subseteq w_{2}(G)$ such that $|C_{i}|=O(|G|^{1/2}\log ^{1/2}|G|)$ and $C_{1}C_{2}=G$. In particular, if $w$ is any nontrivial word and $G$ is a sufficiently large finite nonabelian simple group, then $w(G)$ contains a thin base of order $2$. This is a nonabelian analog of a result of Van Vu [‘On a refinement of Waring’s problem’, Duke Math. J. 105(1) (2000), 107–134.] for the classical Waring problem. Further results concerning thin bases of $G$ of order $2$ are established for any finite group and for any compact Lie group $G$.


2015 ◽  
Vol 18 (5) ◽  
Author(s):  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil'ev

AbstractFinite groups are said to be isospectral if they have the same sets of element orders. A finite nonabelian simple group


2015 ◽  
Vol 98 (112) ◽  
pp. 251-263
Author(s):  
Behrooz Khosravi ◽  
A. Babai

In 2006, Vasil'ev posed the problem: Does there exist a positive integer k such that there are no k pairwise nonisomorphic nonabelian finite simple groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, confirmed the conjecture for the case when one of the groups is alternating. We continue this work and determine all nonabelian simple groups having the same prime graphs as the nonabelian simple group 2Dn(q).


2013 ◽  
Vol 94 (3) ◽  
pp. 289-303 ◽  
Author(s):  
S. H. ALAVI ◽  
A. DANESHKHAH ◽  
H. P. TONG-VIET ◽  
T. P. WAKEFIELD

AbstractLet $G$ denote a finite group and $\mathrm{cd} (G)$ the set of irreducible character degrees of $G$. Huppert conjectured that if $H$ is a finite nonabelian simple group such that $\mathrm{cd} (G)= \mathrm{cd} (H)$, then $G\cong H\times A$, where $A$ is an abelian group. He verified the conjecture for many of the sporadic simple groups and we complete its verification for the remainder.


2012 ◽  
Vol 04 (02) ◽  
pp. 1250035 ◽  
Author(s):  
A. ERFANIAN ◽  
B. TOLUE

In this paper we introduce the conjugate graph [Formula: see text] associated to a nonabelian group G with vertex set G\Z(G) such that two distinct vertices join by an edge if they are conjugate. We show if [Formula: see text], where S is a finite nonabelian simple group which satisfy Thompson's conjecture, then G ≅ S. Further, if central factors of two nonabelian groups H and G are isomorphic and |Z(G)| = |Z(H)|, then H and G have isomorphic conjugate graphs.


2009 ◽  
Vol 08 (01) ◽  
pp. 105-114 ◽  
Author(s):  
LIANGCAI ZHANG ◽  
WUJIE SHI

Let G be a finite nonabelian group and associate a disoriented noncommuting graph ∇(G) with G as follows: the vertex set of ∇(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, J. G. Thompson gave the following conjecture.Thompson's Conjecture If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ≅ M, where N(G) denotes the set of the sizes of the conjugacy classes of G.In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture in [1] as follows.AAM's Conjecture Let M be a finite nonabelian simple group and G a group such that ∇(G)≅ ∇ (M). Then G ≅ M.Even though both of the two conjectures are known to be true for all finite simple groups with nonconnected prime graphs, it is still unknown for almost all simple groups with connected prime graphs. In the present paper, we prove that the second conjecture is true for the projective special unitary simple group U4(7).


1997 ◽  
Vol 56 (2) ◽  
pp. 253-261
Author(s):  
Cai Heng Li

A finite group G is said to have the m-CI property if, for any two Cayley graphs Cay(G, S) and Cay(G, T) of valency m, Cay(G, S) ≅ Cay(G, T) implies Sσ = T for some automorphism σ of G. In this paper, we investigate finite groups with the m-CI property. We first construct groups with the 3-CI property but not with the 2-CI property, and then prove that a nonabelian simple group has the 3-CI property if and only if it is A5. Finally, for infinitely many values of m, we construct Frobenius groups with the m-CI property but not with the nontrivial k-CI property for any k < m.


Sign in / Sign up

Export Citation Format

Share Document