Modified Iteration Method for Numerical Solution of Nonlinear Differential Equations Arising in Science and Engineering

Author(s):  
Maheshwar Pathak ◽  
Pratibha Joshi
Author(s):  
S.E. Kasenov ◽  
◽  
G.E. Kasenova ◽  
A.A. Sultangazin ◽  
B.D. Bakytbekova ◽  
...  

The article considers direct and inverse problems of a system of nonlinear differential equations. Such problems are often found in various fields of science, especially in medicine, chemistry and economics. One of the main methods for solving nonlinear differential equations is the numerical method. The initial direct problem is solved by the Rune-Kutta method with second accuracy and graphs of the numerical solution are shown. The inverse problem of finding the coefficients of a system of nonlinear differential equations with additional information on solving the direct problem is posed. The numerical solution of this inverse problem is reduced to minimizing the objective functional. One of the methods that is applicable to nonsmooth and noisy functionals, unconditional optimization of the functional of several variables, which does not use the gradient of the functional, is the Nelder-Mead method. The article presents the NellerMead algorithm. And also a numerical solution of the inverse problem is shown.


Author(s):  
Elena Adomaitienė ◽  
Skaidra Bumelienė ◽  
Gytis Mykolaitis ◽  
Arūnas Tamaševičius

A control method for desynchronizing an array of mean-field coupled FitzHugh–Nagumo-type oscillators is described. The technique is based on applying an adjustable DC voltage source to the coupling node. Both, numerical solution of corresponding nonlinear differential equations and hardware experiments with a nonlinear electrical circuit have been performed.


2018 ◽  
Vol 13 (02) ◽  
pp. 2050042
Author(s):  
Fernane Khaireddine

In this paper, we use the variational iteration method (VIM) to construct approximate solutions for the general [Formula: see text]th-order integro-differential equations. We show that his method can be effectively and easily used to solve some classes of linear and nonlinear Volterra integro-differential equations. Finally, some numerical examples with exact solutions are given.


Sign in / Sign up

Export Citation Format

Share Document