NUMERICAL SOLUTION OF THE INVERSE PROBLEM FOR A SYSTEM OF DIFFERENTIAL EQUATIONS

Author(s):  
S.E. Kasenov ◽  
◽  
G.E. Kasenova ◽  
A.A. Sultangazin ◽  
B.D. Bakytbekova ◽  
...  

The article considers direct and inverse problems of a system of nonlinear differential equations. Such problems are often found in various fields of science, especially in medicine, chemistry and economics. One of the main methods for solving nonlinear differential equations is the numerical method. The initial direct problem is solved by the Rune-Kutta method with second accuracy and graphs of the numerical solution are shown. The inverse problem of finding the coefficients of a system of nonlinear differential equations with additional information on solving the direct problem is posed. The numerical solution of this inverse problem is reduced to minimizing the objective functional. One of the methods that is applicable to nonsmooth and noisy functionals, unconditional optimization of the functional of several variables, which does not use the gradient of the functional, is the Nelder-Mead method. The article presents the NellerMead algorithm. And also a numerical solution of the inverse problem is shown.

Author(s):  
Elena Adomaitienė ◽  
Skaidra Bumelienė ◽  
Gytis Mykolaitis ◽  
Arūnas Tamaševičius

A control method for desynchronizing an array of mean-field coupled FitzHugh–Nagumo-type oscillators is described. The technique is based on applying an adjustable DC voltage source to the coupling node. Both, numerical solution of corresponding nonlinear differential equations and hardware experiments with a nonlinear electrical circuit have been performed.


Filomat ◽  
2017 ◽  
Vol 31 (3) ◽  
pp. 699-708 ◽  
Author(s):  
Salih Tatar ◽  
Süleyman Ulusoy

This study is devoted to a nonlinear time fractional inverse coeficient problem. The unknown coeffecient depends on the gradient of the solution and belongs to a set of admissible coeffecients. First we prove that the direct problem has a unique solution. Afterwards we show the continuous dependence of the solution of the corresponding direct problem on the coeffecient, the existence of a quasi-solution of the inverse problem is obtained in the appropriate class of admissible coeffecients.


Author(s):  
S. C. Shiralashetti ◽  
M. H. Kantli ◽  
A. B. Deshi

In this paper, we obtained the Haar wavelet-based numerical solution of the nonlinear differential equations arising in fluid dynamics, i.e., electrohydrodynamic flow, elastohydrodynamic lubrication and nonlinear boundary value problems. Error analysis is observed, it shows that the Haar wavelet-based results give better accuracy than the existing methods, which is justified through illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document