Construction of irreducible polynomials over finite fields

Author(s):  
P. L. Sharma ◽  
Ashima

Irreducible polynomials over finite fields and their applications have been quite well studied. Here, we discuss the construction of the irreducible polynomials of degree [Formula: see text] over the finite field [Formula: see text] for a given irreducible polynomial of degree [Formula: see text]. Furthermore, we construct the irreducible polynomials of degree [Formula: see text] over the finite field [Formula: see text] for a given irreducible polynomial of degree [Formula: see text] by using the method of composition of polynomials with some conditions on coefficients and degree of a given irreducible polynomial.

2003 ◽  
Vol 55 (2) ◽  
pp. 225-246 ◽  
Author(s):  
William D. Banks ◽  
Asma Harcharras ◽  
Igor E. Shparlinski

AbstractWe extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring [x]/M(x) for collections of polynomials either of the form f−1g−1 or of the form f−1g−1 + afg, where f and g are polynomials coprime to M and of very small degree relative to M, and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.


2001 ◽  
Vol 27 (4) ◽  
pp. 197-200
Author(s):  
Mihai Caragiu

We use Eisenstein's irreducibility criterion to prove that there exists an absolutely irreducible polynomialP(X,Y)∈GF(q)[X,Y]with coefficients in the finite fieldGF(q)withqelements, with prescribed level curvesXc:={(x,y)∈GF(q)2|P(x,y)=c}.


1989 ◽  
Vol 40 (3) ◽  
pp. 407-412 ◽  
Author(s):  
Stephen D. Cohen

A self-contained elementary account is given of the theorem of S. Agou that classifies all composite irreducible polynomials of the form over a finite field of characteristic p. Written to appeal to a wide readership, it is intended to complement the original rather technical proof and other contributions by the author and by Moreno.


2019 ◽  
Vol 19 (11) ◽  
pp. 2050210
Author(s):  
Ryul Kim ◽  
Hyang-Sim Son

Some results on the [Formula: see text]-normal elements and [Formula: see text]-normal polynomials over finite fields are given in the recent literature. In this paper, we show that a transformation [Formula: see text] can be used to produce an infinite sequence of irreducible polynomials over a finite field [Formula: see text] of characteristic [Formula: see text]. By iteration of this transformation, we construct the [Formula: see text]-normal polynomials of degree [Formula: see text] in [Formula: see text] starting from a suitable initial [Formula: see text]-normal polynomial of degree [Formula: see text]. We also construct an infinite sequence of [Formula: see text]-normal polynomials using a certain quadratic transformation over [Formula: see text].


Author(s):  
Somphong Jitman ◽  
Aunyarut Bunyawat ◽  
Supanut Meesawat ◽  
Arithat Thanakulitthirat ◽  
Napat Thumwanit

A family of good punctured polynomials is introduced. The complete characterization and enumeration of such polynomials are given over the binary fieldF2. Over a nonbinary finite fieldFq, the set of good punctured polynomials of degree less than or equal to2are completely determined. Forn≥3, constructive lower bounds of the number of good punctured polynomials of degreenoverFqare given.


2013 ◽  
Vol 12 (07) ◽  
pp. 1350030 ◽  
Author(s):  
WEI CAO

Let f be a multivariate polynomial over a finite field and its degree matrix be composed of the degree vectors appearing in f. In this paper, we provide an elementary approach to estimating the exponential sums of the polynomials with positive square degree matrices in terms of the elementary divisors of the degree matrices.


2011 ◽  
Vol 07 (04) ◽  
pp. 1093-1102 ◽  
Author(s):  
WEI CAO

Let f be a polynomial in n variables over the finite field 𝔽q and Nq(f) denote the number of 𝔽q-rational points on the affine hypersurface f = 0 in 𝔸n(𝔽q). A φ-reduction of f is defined to be a transformation σ : 𝔽q[x1, …, xn] → 𝔽q[x1, …, xn] such that Nq(f) = Nq(σ(f)) and deg f ≥ deg σ(f). In this paper, we investigate φ-reduction by using the degree matrix which is formed by the exponents of the variables of f. With φ-reduction, we may improve various estimates on Nq(f) and utilize the known results for polynomials with low degree. Furthermore, it can be used to find the explicit formula for Nq(f).


Author(s):  
S. D. Cohen

AbstractFor a polynomial f(x) over a finite field Fq, denote the polynomial f(y)−f(x) by ϕf(x, y). The polynomial ϕf has frequently been used in questions on the values of f. The existence is proved here of a polynomial F over Fq of the form F = Lr, where L is an affine linearized polynomial over Fq, such that f = g(F) for some polynomial g and the part of ϕf which splits completely into linear factors over the algebraic closure of Fq is exactly φF. This illuminates an aspect of work of D. R. Hayes and Daqing Wan on the existence of permutation polynomials of even degree. Related results on value sets, including the exhibition of a class of permutation polynomials, are also mentioned.


Sign in / Sign up

Export Citation Format

Share Document