Some Steiner concepts on lexicographic products of graphs

2014 ◽  
Vol 06 (04) ◽  
pp. 1450060 ◽  
Author(s):  
Bijo S. Anand ◽  
Manoj Changat ◽  
Iztok Peterin ◽  
Prasanth G. Narasimha-Shenoi

Let G be a graph and W a subset of V(G). A subtree with the minimum number of edges that contains all vertices of W is a Steiner tree for W. The number of edges of such a tree is the Steiner distance of W and union of all vertices belonging to Steiner trees for W form a Steiner interval. We describe both of these for the lexicographic product of graphs. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Carathéodory number, and a partial answer for the Radon number.

2017 ◽  
Vol 33 (2) ◽  
pp. 169-180
Author(s):  
MITROFAN M. CHOBAN ◽  
◽  
VASILE BERINDE ◽  
◽  

Two open problems in the fixed point theory of quasi metric spaces posed in [Berinde, V. and Choban, M. M., Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform., 22 (2013), No. 1, 23–32] are considered. We give a complete answer to the first problem, a partial answer to the second one, and also illustrate the complexity and relevance of these problems by means of four very interesting and comprehensive examples.


2018 ◽  
Vol 2 (2) ◽  
pp. 72
Author(s):  
H Hendy ◽  
Kiki A. Sugeng ◽  
A.N.M Salman ◽  
Nisa Ayunda

<p>Let <span class="math"><em>H</em></span> and <span class="math"><em>G</em></span> be two simple graphs. The concept of an <span class="math"><em>H</em></span>-magic decomposition of <span class="math"><em>G</em></span> arises from the combination between graph decomposition and graph labeling. A decomposition of a graph <span class="math"><em>G</em></span> into isomorphic copies of a graph <span class="math"><em>H</em></span> is <span class="math"><em>H</em></span>-magic if there is a bijection <span class="math"><em>f</em> : <em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>) → {1, 2, ..., ∣<em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>)∣}</span> such that the sum of labels of edges and vertices of each copy of <span class="math"><em>H</em></span> in the decomposition is constant. A lexicographic product of two graphs <span class="math"><em>G</em><sub>1</sub></span> and <span class="math"><em>G</em><sub>2</sub>, </span> denoted by <span class="math"><em>G</em><sub>1</sub>[<em>G</em><sub>2</sub>], </span> is a graph which arises from <span class="math"><em>G</em><sub>1</sub></span> by replacing each vertex of <span class="math"><em>G</em><sub>1</sub></span> by a copy of the <span class="math"><em>G</em><sub>2</sub></span> and each edge of <span class="math"><em>G</em><sub>1</sub></span> by all edges of the complete bipartite graph <span class="math"><em>K</em><sub><em>n</em>, <em>n</em></sub></span> where <span class="math"><em>n</em></span> is the order of <span class="math"><em>G</em><sub>2</sub>.</span> In this paper we provide a sufficient condition for <span class="math">$\overline{C_{n}}[\overline{K_{m}}]$</span> in order to have a <span class="math">$P_{t}[\overline{K_{m}}]$</span>-magic decompositions, where <span class="math"><em>n</em> &gt; 3, <em>m</em> &gt; 1, </span> and <span class="math"><em>t</em> = 3, 4, <em>n</em> − 2</span>.</p>


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050021
Author(s):  
Ghazale Ghazi ◽  
Freydoon Rahbarnia ◽  
Mostafa Tavakoli

This paper studies the 2-distance chromatic number of some graph product. A coloring of [Formula: see text] is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in the 2-distance coloring of [Formula: see text] is the 2-distance chromatic number and denoted by [Formula: see text]. In this paper, we obtain some upper and lower bounds for the 2-distance chromatic number of the rooted product, generalized rooted product, hierarchical product and we determine exact value for the 2-distance chromatic number of the lexicographic product.


2014 ◽  
Vol 8 ◽  
pp. 1521-1533 ◽  
Author(s):  
Benjier H. Arriola ◽  
Sergio R. Canoy, Jr.

2015 ◽  
Vol 50 ◽  
pp. 139-144 ◽  
Author(s):  
Cláudia Linhares Sales ◽  
Rafael Vargas ◽  
Leonardo Sampaio

Analysis ◽  
2007 ◽  
Vol 27 (2-3) ◽  
Author(s):  
Masakazu Shiba

Any convex combination of the so-called extremal horizontal and vertical slit mappings of a plane domain is known to be univalent. In his study on the conformal welding of annuli F. Maitani needed to know when a complex linear combination is univalent and he gave a partial answer to this problem. In the present article we give a complete answer to his and to generalized problems.


2011 ◽  
Vol 311 (16) ◽  
pp. 1693-1698 ◽  
Author(s):  
Boštjan Brešar ◽  
Tadeja Kraner Šumenjak ◽  
Aleksandra Tepeh

10.37236/2974 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Min Feng ◽  
Min Xu ◽  
Kaishun Wang

Let $G$ be a connected graph and $H$ be an arbitrary graph. In this paper, we study the identifying codes of the lexicographic product $G[H]$ of $G$ and $H$. We first introduce two parameters of $H$, which are closely related to identifying codes of $H$. Then we provide the sufficient and necessary condition for $G[H]$ to be identifiable. Finally, if $G[H]$ is identifiable, we determine the minimum cardinality of identifying codes of $G[H]$ in terms of the order of $G$ and these two parameters of $H$.


Sign in / Sign up

Export Citation Format

Share Document