Resolving domination number of graphs

2019 ◽  
Vol 11 (06) ◽  
pp. 1950071
Author(s):  
Ridho Alfarisi ◽  
Dafik ◽  
Arika Indah Kristiana

For a set [Formula: see text] of vertices of a graph [Formula: see text], the representation multiset of a vertex [Formula: see text] of [Formula: see text] with respect to [Formula: see text] is [Formula: see text], where [Formula: see text] is a distance between of the vertex [Formula: see text] and the vertices in [Formula: see text] together with their multiplicities. The set [Formula: see text] is a resolving set of [Formula: see text] if [Formula: see text] for every pair [Formula: see text] of distinct vertices of [Formula: see text]. The minimum resolving set [Formula: see text] is a multiset basis of [Formula: see text]. If [Formula: see text] has a multiset basis, then its cardinality is called multiset dimension, denoted by [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is a dominating set for [Formula: see text] if every vertex of [Formula: see text] that is not in [Formula: see text] is adjacent to some vertex of [Formula: see text]. The minimum cardinality of the dominating set is a domination number, denoted by [Formula: see text]. A vertex set of some vertices in [Formula: see text] that is both resolving and dominating set is a resolving dominating set. The minimum cardinality of resolving dominating set is called resolving domination number, denoted by [Formula: see text]. In our paper, we investigate and establish sharp bounds of the resolving domination number of [Formula: see text] and determine the exact value of some family graphs.

2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


Throughout this paper, consider G = (V,E) as a connected graph. A subset D of V(G) is a set dominating set of G if for every M  V / D there exists a non-empty set N of D such that the induced sub graph <MUN> is connected. A subset D of the vertex set of a graph G is called a co-secure dominating set of a graph if D is a dominating set, and for each u' D there exists a vertex v'V / D such that u'v' is an edge and D \u'v' is a dominating set. A co-secure dominating set D is a co-secure set dominating set of G if D is also a set dominating set of G. The co-secure set domination number G s cs γ is the minimum cardinality of a co-secure set dominating set. In this paper we initiate the study of this new parameter & also determine the co-secure set domination number of some standard graphs and obtain its bounds.


Author(s):  
B. Senthilkumar ◽  
H. Naresh Kumar ◽  
Y. B. Venkatakrishnan

For a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is the total edge dominating set if every edge in [Formula: see text] is adjacent to at least one edge in [Formula: see text]. The minimum cardinality of a total edge dominated set, denoted by [Formula: see text], is called the total edge domination number of a graph [Formula: see text]. We prove that for every tree [Formula: see text] of diameter at least two with [Formula: see text] leaves and [Formula: see text] support vertices we have [Formula: see text], and we characterize the trees attaining each of the bounds.


2016 ◽  
Vol 15 (3) ◽  
pp. 55-64
Author(s):  
John Sherra ◽  
Badekara Sooryanarayana

A dominating set $D$ of a graph $G$ which is also a resolving set of $G$ is called a metro dominating set. A metro dominating set $D$ of a graph $G(V,E)$ is a unique metro dominating set (in short an UMD-set) if $|N(v) \cap D| = 1$ for each vertex $v\in V-D$ and the minimum cardinality of an UMD-set of $G$ is the unique metro domination number of $G$. In this paper, we determine unique metro domination number of $P_n\times P_2$.


Let G be a simple graph with vertex set V(G) and edge set E(G). A set S of vertices in a graph 𝑮(𝑽,𝑬) is called a total dominating set if every vertex 𝒗 ∈ 𝑽 is adjacent to an element of S. The minimum cardinality of a total dominating set of G is called the total domination number of G which is denoted by 𝜸𝒕 (𝑮). The energy of the graph is defined as the sum of the absolute values of the eigen values of the adjacency matrix. In this paper, we computed minimum total dominating energy of a Friendship Graph, Ladder Graph and Helm graph. The Minimum total dominating energy for bistar graphand sun graph is also determined.


Let 𝑮 = (𝑽,𝑬) be a simple, finite, connected and undirected graph with vertex set V(G) and edge set E(G). Let 𝑺 ⊆ 𝑽(𝑮). A set S of vertices of G is a dominating set if every vertex in 𝑽 𝑮 − 𝑺 is adjacent to at least one vertex in S. A set S of vertices in a graph 𝑮(𝑽,𝑬) is called a total dominating set if every vertex 𝒗 ∈ 𝑽 is adjacent to an element of S. The minimum cardinality of a total dominating set of G is called the total domination number of G which is denoted by 𝜸𝒕 (𝑮). The energy of the graph is defined as the sum of the absolute values of the eigen values of the adjacency matrix. In this paper, we computed minimum total dominating energy of some special graphs such as Paley graph, Shrikhande graph, Clebsch graph, Chvatal graph, Moser graph and Octahedron graph.


Sign in / Sign up

Export Citation Format

Share Document