permutation graph
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 943
Author(s):  
Bo-Ok Seong ◽  
Hyeong-Ok Lee ◽  
Jong-Seok Kim ◽  
Jung-Hyun Seo

The interconnection network represents an interconnected structure of processors that strongly determines the performance quality of a parallel processing system. The shuffle-exchange permutation (SEP) network with three degrees has high fault tolerance and can be efficiently simulated through star, bubble-sort, and pancake graphs. This study proposes a new interconnection network: the new SEP (NSEP), which improves the diameter and reduces network cost by adding one edge to the SEP network, and presents its graph properties and routing algorithms. The NSEP network, with a degree of connectivity of four, demonstrated maximum fault tolerance and Hamiltonian cycle. Furthermore, the diameter was seen to be improved by 40% or more and the network cost by 20% or more.


Author(s):  
Sk. Amanathulla ◽  
Madhumangal Pal

One important problem in graph theory is graph coloring or graph labeling. Labeling problem is a well-studied problem due to its wide applications, especially in frequency assignment in (mobile) communication system, coding theory, ray crystallography, radar, circuit design, etc. For two non-negative integers, labeling of a graph is a function from the node set to the set of non-negative integers such that if and if, where it represents the distance between the nodes. Intersection graph is a very important subclass of graph. Unit disc graph, chordal graph, interval graph, circular-arc graph, permutation graph, trapezoid graph, etc. are the important subclasses of intersection graphs. In this chapter, the authors discuss labeling for intersection graphs, specially for interval graphs, circular-arc graphs, permutation graphs, trapezoid graphs, etc., and have presented a lot of results for this problem.


10.37236/8225 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Mark Dukes ◽  
Thomas Selig ◽  
Jason P. Smith ◽  
Einar Steingrímsson

A permutation graph is a graph whose edges are given by inversions of a permutation. We study the Abelian sandpile model (ASM) on such graphs. We exhibit a bijection between recurrent configurations of the ASM on permutation graphs and the tiered trees introduced by Dugan et al. [10]. This bijection allows certain parameters of the recurrent configurations to be read on the corresponding tree. In particular, we show that the level of a recurrent configuration can be interpreted as the external activity of the corresponding tree, so that the bijection exhibited provides a new proof of a famous result linking the level polynomial of the ASM to the ubiquitous Tutte polynomial. We show that the set of minimal recurrent configurations is in bijection with the set of complete non-ambiguous binary trees introduced by Aval et al. [2], and introduce a multi-rooted generalization of these that we show to correspond to all recurrent configurations. In the case of permutations with a single descent, we recover some results from the case of Ferrers graphs presented in [11], while we also recover results of Perkinson et al. [16] in the case of threshold graphs.


2019 ◽  
Vol 53 (3) ◽  
pp. 1585-1614 ◽  
Author(s):  
Sreenanda Raut ◽  
Madhumangal Pal
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
pp. 53-70
Author(s):  
Khmaies Ouahada ◽  
Hendrik C. Ferreira

Abstract A New graph distance concept introduced for certain coding techniques helped in their design and analysis as in the case of distance-preserving mappings and spectral shaping codes. A graph theoretic construction, mapping binary sequences to permutation sequences and inspired from the k-cube graph has reached the upper bound on the sum of the distances for certain values of the length of the permutation sequence. The new introduced distance concept in the k-cube graph helped better understanding and analyzing for the first time the concept of distance-reducing mappings. A combination of distance and the index-permutation graph concepts helped uncover and verify certain properties of spectral null codes, which were previously difficult to analyze.


Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 140 ◽  
Author(s):  
Asahi Takaoka

The Hamiltonian cycle reconfiguration problem asks, given two Hamiltonian cycles C 0 and C t of a graph G, whether there is a sequence of Hamiltonian cycles C 0 , C 1 , … , C t such that C i can be obtained from C i − 1 by a switch for each i with 1 ≤ i ≤ t , where a switch is the replacement of a pair of edges u v and w z on a Hamiltonian cycle with the edges u w and v z of G, given that u w and v z did not appear on the cycle. We show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete, settling an open question posed by Ito et al. (2011) and van den Heuvel (2013). More precisely, we show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs, and bipartite graphs with maximum degree 6. Bipartite permutation graphs form a proper subclass of chordal bipartite graphs, and unit interval graphs form a proper subclass of strongly chordal graphs. On the positive side, we show that, for any two Hamiltonian cycles of a bipartite permutation graph and a unit interval graph, there is a sequence of switches transforming one cycle to the other, and such a sequence can be obtained in linear time.


2018 ◽  
Vol 35 (2) ◽  
pp. 2199-2213 ◽  
Author(s):  
Sreenanda Raut ◽  
Madhumangal Pal ◽  
Ganesh Ghorai
Keyword(s):  

2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2016 ◽  
Vol 116 (9) ◽  
pp. 569-573 ◽  
Author(s):  
Masashi Kiyomi ◽  
Yota Otachi

2016 ◽  
Vol 609 ◽  
pp. 87-103
Author(s):  
Jessica Enright ◽  
Lorna Stewart

Sign in / Sign up

Export Citation Format

Share Document