Pitchfork domination in graphs

2020 ◽  
Vol 12 (02) ◽  
pp. 2050025
Author(s):  
Manal N. Al-Harere ◽  
Mohammed A. Abdlhusein

In this paper, a new model of domination in graphs called the pitchfork domination is introduced. Let [Formula: see text] be a finite, simple and undirected graph without isolated vertices, a subset [Formula: see text] of [Formula: see text] is a pitchfork dominating set if every vertex [Formula: see text] dominates at least [Formula: see text] and at most [Formula: see text] vertices of [Formula: see text], where [Formula: see text] and [Formula: see text] are non-negative integers. The domination number of [Formula: see text], denotes [Formula: see text] is a minimum cardinality over all pitchfork dominating sets in [Formula: see text]. In this work, pitchfork domination when [Formula: see text] and [Formula: see text] is studied. Some bounds on [Formula: see text] related to the order, size, minimum degree, maximum degree of a graph and some properties are given. Pitchfork domination is determined for some known and new modified graphs. Finally, a question has been answered and discussed that; does every finite, simple and undirected graph [Formula: see text] without isolated vertices have a pitchfork domination or not?

Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


Author(s):  
Saeid Alikhani ◽  
Nasrin Jafari

Let $G = (V, E)$ be a simple graph of order $n$. A  total dominating set of $G$ is a subset $D$ of $V$, such that every vertex of $V$ is adjacent to at least one vertex in  $D$. The total domination number of $G$ is  minimum cardinality of  total dominating set in $G$ and is denoted by $\gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=\sum_{i=\gamma_t(G)}^n d_t(G,i)$, where $d_t(G,i)$ is the number of total dominating sets of $G$ of size $i$. In this paper, we study roots of the total domination polynomial of some graphs.  We show that  all roots of $D_t(G, x)$ lie in the circle with center $(-1, 0)$ and radius $\sqrt[\delta]{2^n-1}$, where $\delta$ is the minimum degree of $G$. As a consequence, we prove that if $\delta\geq \frac{2n}{3}$,  then every integer root of $D_t(G, x)$ lies in the set $\{-3,-2,-1,0\}$.


2019 ◽  
Vol 11 (1) ◽  
pp. 52-64
Author(s):  
Libin Chacko Samuel ◽  
Mayamma Joseph

Abstract A set of vertices in a graph is a dominating set if every vertex not in the set is adjacent to at least one vertex in the set. A dominating structure is a subgraph induced by the dominating set. Connected domination is a type of domination where the dominating structure is connected. Clique domination is a type of domination in graphs where the dominating structure is a complete subgraph. The clique domination number of a graph G denoted by γk(G) is the minimum cardinality among all the clique dominating sets of G. We present few properties of graphs admitting dominating cliques along with bounds on clique domination number in terms of order and size of the graph. A necessary and sufficient condition for the existence of dominating clique in strong product of graphs is presented. A forbidden subgraph condition necessary to imply the existence of a connected dominating set of size four also is found.


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


Author(s):  
Mohammed A. Abdlhusein ◽  
Manal N. Al-Harere

New two domination types are introduced in this paper. Let [Formula: see text] be a finite, simple, and undirected graph without isolated vertex. A dominating subset [Formula: see text] is a total pitchfork dominating set if [Formula: see text] for every [Formula: see text] and [Formula: see text] has no isolated vertex. [Formula: see text] is an inverse total pitchfork dominating set if [Formula: see text] is a total pitchfork dominating set of [Formula: see text]. The cardinality of a minimum (inverse) total pitchfork dominating set is the (inverse) total pitchfork domination number ([Formula: see text]) [Formula: see text]. Some properties and bounds are studied associated with maximum degree, minimum degree, order, and size of the graph. These modified domination parameters are applied on some standard and complement graphs.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550010 ◽  
Author(s):  
I. Sahul Hamid ◽  
S. Balamurugan

A set S of vertices of a graph G is called a dominating set of G if every vertex in V(G) - S is adjacent to a vertex in S. A dominating set S such that the subgraph 〈S〉 induced by S has at least one isolated vertex is called an isolate dominating set. The minimum cardinality of an isolate dominating set is called the isolate domination number and is denoted by γ0(G). This concept was introduced in [I. Sahul Hamid and S. Balamurugan, Isolate domination in graphs (Communicated)] and further studied in [I. Sahul Hamid and S. Balamurugan, Extended chain of domination parameters in graphs, ISRN Combin. 2013 (2013), Article ID: 792743, 4 pp.; Isolate domination and maximum degree, Bull. Int. Math. Virtual Inst. 3 (2013) 127–133; Isolate domination in unicyclic graphs, Int. J. Math. Soft Comput. 3(3) (2013) 79–83]. This paper studies the effect of the removal of a vertex upon the isolate domination number.


Author(s):  
Mohammed A. Abdlhusein

Let [Formula: see text] be a finite graph, simple, undirected and has no isolated vertex. A dominating subset [Formula: see text] of [Formula: see text] is said a bi-dominating set, if every vertex of it dominates two vertices of [Formula: see text]. The bi-domination number of [Formula: see text], denoted by [Formula: see text] is the minimum cardinality over all bi-dominating sets in [Formula: see text]. In this paper, a certain modified bi-domination parameter called doubly connected bi-domination and its inverse are introduced. Several bounds and properties are studied here. These modified dominations are applied and evaluated for several well-known graphs and complement graphs.


Sign in / Sign up

Export Citation Format

Share Document