independent domination
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 45)

H-INDEX

13
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Norah Almalki ◽  
Pawaton Kaemawichanurat

A vertex subset D of G is a dominating set if every vertex in V(G)∖D is adjacent to a vertex in D. A dominating set D is independent if G[D], the subgraph of G induced by D, contains no edge. The domination number γ(G) of a graph G is the minimum cardinality of a dominating set of G, and the independent domination number i(G) of G is the minimum cardinality of an independent dominating set of G. A classical work related to the relationship between γ(G) and i(G) of a graph G was established in 1978 by Allan and Laskar. They proved that every K1,3-free graph G satisfies γ(G)=i(H). Hexagonal systems (2 connected planar graphs whose interior faces are all hexagons) have been extensively studied as they are used to present bezenoid hydrocarbon structures which play an important role in organic chemistry. The domination numbers of hexagonal systems have been studied continuously since 2018 when Hutchinson et al. posted conjectures, generated from a computer program called Conjecturing, related to the domination numbers of hexagonal systems. Very recently in 2021, Bermudo et al. answered all of these conjectures. In this paper, we extend these studies by considering the relationship between the domination number and the independent domination number of hexagonal systems. Although every hexagonal system H with at least two hexagons contains K1,3 as an induced subgraph, we find many classes of hexagonal systems whose domination number is equal to an independent domination number. However, we establish the existence of a hexagonal system H such that γ(H)<i(H) with the prescribed number of hexagons.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


2021 ◽  
Vol 76 (3) ◽  
Author(s):  
A. Cabrera Martínez ◽  
M. L. Puertas ◽  
J. A. Rodríguez-Velázquez

AbstractLet G be a graph of order $${\text {n}}(G)$$ n ( G ) and vertex set V(G). Given a set $$S\subseteq V(G)$$ S ⊆ V ( G ) , we define the external neighbourhood of S as the set $$N_e(S)$$ N e ( S ) of all vertices in $$V(G){\setminus } S$$ V ( G ) \ S having at least one neighbour in S. The differential of S is defined to be $$\partial (S)=|N_e(S)|-|S|$$ ∂ ( S ) = | N e ( S ) | - | S | . In this paper, we introduce the study of the 2-packing differential of a graph, which we define as $$\partial _{2p}(G)=\max \{\partial (S):\, S\subseteq V(G) \text { is a }2\text {-packing}\}.$$ ∂ 2 p ( G ) = max { ∂ ( S ) : S ⊆ V ( G ) is a 2 -packing } . We show that the 2-packing differential is closely related to several graph parameters, including the packing number, the independent domination number, the total domination number, the perfect differential, and the unique response Roman domination number. In particular, we show that the theory of 2-packing differentials is an appropriate framework to investigate the unique response Roman domination number of a graph without the use of functions. Among other results, we obtain a Gallai-type theorem, which states that $$\partial _{2p}(G)+\mu _{_R}(G)={\text {n}}(G)$$ ∂ 2 p ( G ) + μ R ( G ) = n ( G ) , where $$\mu _{_R}(G)$$ μ R ( G ) denotes the unique response Roman domination number of G. As a consequence of the study, we derive several combinatorial results on $$\mu _{_R}(G)$$ μ R ( G ) , and we show that the problem of finding this parameter is NP-hard. In addition, the particular case of lexicographic product graphs is discussed.


2021 ◽  
Author(s):  
Martin Knor ◽  
Riste Škrekovski ◽  
Aleksandra Tepeh

2021 ◽  
Vol 294 ◽  
pp. 115-124
Author(s):  
Doost Ali Mojdeh ◽  
Iztok Peterin ◽  
Babak Samadi ◽  
Ismael G. Yero

Author(s):  
A. Akbari ◽  
S. Akbari ◽  
A. Doosthosseini ◽  
Z. Hadizadeh ◽  
Michael A. Henning ◽  
...  

Author(s):  
Ammar Babikir ◽  
Magda Dettlaff ◽  
Michael A. Henning ◽  
Magdalena Lemańska

AbstractA set S of vertices in a graph G is a dominating set if every vertex not in S is ad jacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. The independent domination subdivision number $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the independent domination number. We show that for every connected graph G on at least three vertices, the parameter $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is well defined and differs significantly from the well-studied domination subdivision number $$\mathrm{sd_\gamma }(G)$$ sd γ ( G ) . For example, if G is a block graph, then $$\mathrm{sd_\gamma }(G) \le 3$$ sd γ ( G ) ≤ 3 , while $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) can be arbitrary large. Further we show that there exist connected graph G with arbitrarily large maximum degree $$\Delta (G)$$ Δ ( G ) such that $$ \hbox {sd}_{\mathrm{i}}(G) \ge 3 \Delta (G) - 2$$ sd i ( G ) ≥ 3 Δ ( G ) - 2 , in contrast to the known result that $$\mathrm{sd_\gamma }(G) \le 2 \Delta (G) - 1$$ sd γ ( G ) ≤ 2 Δ ( G ) - 1 always holds. Among other results, we present a simple characterization of trees T with $$ \hbox {sd}_{\mathrm{i}}(T) = 1$$ sd i ( T ) = 1 .


2021 ◽  
Vol 1832 (1) ◽  
pp. 012022
Author(s):  
T Mazidah ◽  
Dafik ◽  
Slamin ◽  
I H Agustin ◽  
R Nisviasari

Sign in / Sign up

Export Citation Format

Share Document