scholarly journals New Bounds on the Double Total Domination Number of Graphs

Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.

Author(s):  
Saeid Alikhani ◽  
Nasrin Jafari

Let $G = (V, E)$ be a simple graph of order $n$. A  total dominating set of $G$ is a subset $D$ of $V$, such that every vertex of $V$ is adjacent to at least one vertex in  $D$. The total domination number of $G$ is  minimum cardinality of  total dominating set in $G$ and is denoted by $\gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=\sum_{i=\gamma_t(G)}^n d_t(G,i)$, where $d_t(G,i)$ is the number of total dominating sets of $G$ of size $i$. In this paper, we study roots of the total domination polynomial of some graphs.  We show that  all roots of $D_t(G, x)$ lie in the circle with center $(-1, 0)$ and radius $\sqrt[\delta]{2^n-1}$, where $\delta$ is the minimum degree of $G$. As a consequence, we prove that if $\delta\geq \frac{2n}{3}$,  then every integer root of $D_t(G, x)$ lies in the set $\{-3,-2,-1,0\}$.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


2021 ◽  
Vol 14 (2) ◽  
pp. 578-589
Author(s):  
Wardah Masanggila Bent-Usman ◽  
Rowena T. Isla

Let G = (V (G), E(G)) be a simple non-empty graph. For an integer k ≥ 1, a k-fairtotal dominating set (kf td-set) is a total dominating set S ⊆ V (G) such that |NG(u) ∩ S| = k for every u ∈ V (G)\S. The k-fair total domination number of G, denoted by γkf td(G), is the minimum cardinality of a kf td-set. A k-fair total dominating set of cardinality γkf td(G) is called a minimum k-fair total dominating set or a γkf td-set. We investigate the notion of k-fair total domination in this paper. We also characterize the k-fair total dominating sets in the join, corona, lexicographic product and Cartesian product of graphs and determine the exact values or sharpbounds of their corresponding k-fair total domination number.


10.37236/5147 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Florent Foucaud ◽  
Michael A. Henning

A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. A locating-total dominating set of $G$ is a total dominating set $D$ of $G$ with the additional property that every two distinct vertices outside $D$ have distinct neighbors in $D$; that is, for distinct vertices $u$ and $v$ outside $D$, $N(u) \cap D \ne N(v) \cap D$ where $N(u)$ denotes the open neighborhood of $u$. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods.  The location-total domination number of $G$, denoted $\gamma_t^L(G)$, is the minimum cardinality of a locating-total dominating set in $G$. It is well-known that every connected graph of order $n \ge 3$ has a total dominating set of size at most $\frac{2}{3}n$. We conjecture that if $G$ is a twin-free graph of order $n$ with no isolated vertex, then $\gamma_t^L(G) \le \frac{2}{3}n$. We prove the conjecture for graphs without $4$-cycles as a subgraph. We also prove that if $G$ is a twin-free graph of order $n$, then $\gamma_t^L(G) \le \frac{3}{4}n$.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Michael A. Henning ◽  
Viroshan Naicker

Graph Theory International audience Let G be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, γt(G). A set S of vertices in G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number, γdt(G), is the minimum cardinality of such a set. We observe that γdt(G) ≤γt(G). Let G be a connected graph on n vertices with minimum degree δ. It is known [J. Graph Theory 35 (2000), 21 13;45] that if δ≥2 and n ≥11, then γt(G) ≤4n/7. Further [J. Graph Theory 46 (2004), 207 13;210] if δ≥3, then γt(G) ≤n/2. We prove that if δ≥2 and n ≥8, then γdt(G) ≤n/2 and we characterize the extremal graphs.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 241
Author(s):  
José M. Sigarreta

Let G=(V,E) be a graph; a set D⊆V is a total dominating set if every vertex v∈V has, at least, one neighbor in D. The total domination number γt(G) is the minimum cardinality among all total dominating sets. Given an arbitrary graph G, we consider some operators on this graph; S(G),R(G), and Q(G), and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph G.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1165 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Luis P. Montejano ◽  
Juan A. Rodríguez-Velázquez

A total dominating set D of a graph G is said to be a secure total dominating set if for every vertex u ∈ V ( G ) \ D , there exists a vertex v ∈ D , which is adjacent to u, such that ( D \ { v } ) ∪ { u } is a total dominating set as well. The secure total domination number of G is the minimum cardinality among all secure total dominating sets of G. In this article, we obtain new relationships between the secure total domination number and other graph parameters: namely the independence number, the matching number and other domination parameters. Some of our results are tight bounds that improve some well-known results.


2021 ◽  
Vol 14 (1) ◽  
pp. 149-163
Author(s):  
Daven Sapitanan Sevilleno ◽  
Ferdinand P. Jamil

A set S ⊆ V (G) is an independent transversal dominating set of a graph G if S is a dominating set of G and intersects every maximum independent set of G. An independent transversal dominating set which is a total dominating set is an independent transversal total dominating set. The minimum cardinality γit(G) (resp. γitt(G)) of an independent transversal dominating set (resp. independent transversal total dominating set) of G is the independent transversal domination number (resp. independent transversal total domination number) of G. In this paper, we show that for every positive integers a and b with 5 ≤ a ≤ b ≤ 2a − 2, there exists a connected graph G for which γit(G) = a and γitt(G) = b. We also study these two concepts in graphs which are the join, corona or composition of graphs.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Sign in / Sign up

Export Citation Format

Share Document