EXERGETIC ANALYSIS AND ASSESSMENT OF HYBRID REFRIGERATION SYSTEM FOR DAIRY APPLICATIONS

2014 ◽  
Vol 22 (04) ◽  
pp. 1450021 ◽  
Author(s):  
S. ANAND ◽  
A. GUPTA ◽  
S. K. TYAGI

The application of biogas powered refrigeration system is being studied because of many folds increase in the cost of conventional fuels. This paper presents a numerical study of biogas operated ammonia–water hybrid vapor compression absorption refrigeration system for onsite dairy cooling applications. This system involves the compressor between the generator and condenser and use biogas (generated from the cattle dung) fired boiler to heat water which acts as an energy source for generator in the hybrid system. The variation of performance parameters such as heat load of different components, exergy loss, COPcooling, COPheating and exergy efficiency are studied with varying generator temperature. The results indicate that COPcooling as well COPheating values are in the range of 0.1125–0.2159 and 1.112–1.169, respectively, for the same variation in the generator temperature from 65°C to 130°C. The work done by the compressor is also calculated and found to be decreasing with an increase in the condenser, evaporator and generator temperature. The effect of the ambient temperature on the exergy loss in different components is also studied in the analysis and the results revealed that the maximum exergy loss is found in the generator and it is found to be the lowest in compressor.

2014 ◽  
Vol 18 (2) ◽  
pp. 577-590
Author(s):  
Hamed Monsef ◽  
Naghash Zadegan ◽  
Koroush Javaherdeh

In this investigation, a low capacity absorption system has been designed and constructed where the mechanical pump has been replaced with a bubble pump, reducing the cost and eliminating the electrical power. Initially, a test rig bubble pump has been built with a single Pyrex tube to test the effect of different parameters on pumping flow rate. An absorption refrigeration system with a capacity of 2.5 kW has been designed and constructed. Results have shown that a bubble pump with five horizontal tubes with 2.5 mm diameter and submergence ratio of 0.4 has the best performance for this low capacity absorption refrigeration system. The COP of this structure was about 0.51 and mathematical modeling shows that increasing the solution concentration at generator outlet decreases the COP of the system.


2008 ◽  
Vol 12 (3) ◽  
pp. 5-13 ◽  
Author(s):  
Anand Ramanathan ◽  
Prabhakaran Gunasekaran

An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.


2018 ◽  
Vol 11 (No. 07) ◽  
pp. 363-368
Author(s):  
Guillermo Valencia Ochoa ◽  
Jorge Duarte Forero ◽  
Luis Obregon Quinones

2012 ◽  
Vol 170-173 ◽  
pp. 2504-2507
Author(s):  
Lin Wang ◽  
Shuang Ping Duan ◽  
Xiao Long Cui

Energy-conservation and environmental protection are keys to sustainable development of domestic economy. The solar-assisted cascade refrigeration cycle system is developed. The system consists of electricity-driven vapor compression refrigeration system and solar-driven vapor absorption refrigeration system. The vapor compression refrigeration system is connected in series with vapor absorption refrigeration system. Refrigerant and solution reservoirs are designed to store potential to keep the system operating continuously without sunlight. The results indicate that the system obtains pretty higher COP as compared with the conventional vapor compression refrigeration system. COP of the new-type vapor compression refrigeration system increases as sunlight becomes intense.


Sign in / Sign up

Export Citation Format

Share Document