Giant Magnetic Field Effect on Thermal Conductivity of Magnetic Multilayers, Cu/Co/Cu/Ni(Fe)

1993 ◽  
Vol 62 (2) ◽  
pp. 431-434 ◽  
Author(s):  
Hideyuki Sato ◽  
Yuji Aoki ◽  
Yoshihiko Kobayashi ◽  
Hidefumi Yamamoto ◽  
Teruya Shinjo
2013 ◽  
Vol 716 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on near-turbulent thermal convection of a nematic liquid crystal heated from below in a cylindrical cell with an aspect ratio (diameter/height) equal to 0.50 for Rayleigh numbers $2\times 1{0}^{7} \lesssim \mathit{Ra}\lesssim 3\times 1{0}^{8} $ and a Prandtl number of about 355. The Nusselt number $\mathit{Nu}$ as a function of $\mathit{Ra}$ did not differ significantly from that of an isotropic fluid. In a vertical magnetic field $\mathbi{H}$, we found $\mathit{Nu}(H)/ \mathit{Nu}(0)= 1+ a(\mathit{Ra}){H}^{2} $, with $a(\mathit{Ra})= 0. 24{\mathit{Ra}}^{0. 75} ~{\mathrm{G} }^{- 2} $. We present a model that describes the $H$ dependence in terms of a change of the thermal conductivity in the thermal boundary layers due to a field-induced director alignment.


2004 ◽  
Vol 9 (2) ◽  
pp. 129-138
Author(s):  
J. Kleiza ◽  
V. Kleiza

A method for calculating the values of specific resistivity ρ as well as the product µHB of the Hall mobility and magnetic induction on a conductive sample of an arbitrary geometric configuration with two arbitrary fitted current electrodes of nonzero length and has been proposed an grounded. During the experiment, under the constant value U of voltage and in the absence of the magnetic field effect (B = 0) on the sample, the current intensities I(0), IE(0) are measured as well as the mentioned parameters under the effect of magnetic fields B1, B2 (B1 ≠ B2), i.e.: IE(β(i)), I(β(i)), i = 1, 2. It has been proved that under the constant difference of potentials U and sample thickness d, the parameters I(0), IE(0) and IE(β(i)), I(β(i)), i = 1, 2 uniquely determines the values of the product µHB and specific resistivity ρ of the sample. Basing on the conformal mapping method and Hall’s tensor properties, a relation (a system of nonlinear equations) between the above mentioned quantities has been found.


2015 ◽  
Vol 51 (2) ◽  
pp. 345-352 ◽  
Author(s):  
R. Kowalik ◽  
K. Mech ◽  
D. Kutyla ◽  
T. Tokarski ◽  
P. Zabinski

Sign in / Sign up

Export Citation Format

Share Document