rare earth doped
Recently Published Documents


TOTAL DOCUMENTS

2351
(FIVE YEARS 323)

H-INDEX

82
(FIVE YEARS 11)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 646
Author(s):  
Peng Jiang ◽  
Zhipeng Li ◽  
Wei Lu ◽  
Yi Ma ◽  
Wenhuai Tian

Developing rare-earth doped oxysulfide phosphors with diverse morphologies has significant value in many research fields such as in displays, medical diagnosis, and information storage. All of the time, phosphors with spherical morphology have been developed in most of the related literatures. Herein, by simply adjusting the pH values of the reaction solution, Gd2O2S:Tb3+ phosphors with various morphologies (sphere-like, sheet-like, cuboid-like, flat square-like, rod-like) were synthesized. The XRD patterns showed that phosphors with all morphologies are pure hexagonal phase of Gd2O2S. The atomic resolution structural analysis by transmission electron microscopy revealed the crystal growth model of the phosphors with different morphology. With the morphological change, the band gap energy of Gd2O2S:Tb3+ crystal changed from 3.76 eV to 4.28 eV, followed by different luminescence performance. The samples with sphere-like and cuboid-like microstructures exhibit stronger cathodoluminescence intensity than commercial product by comparison. Moreover, luminescence of Gd2O2S:Tb3+ phosphors have different emission performance excited by UV light radiation and an electron beam, which when excited by UV light is biased towards yellow, and while excited by an electron beam is biased towards cyan. This finding provides a simple but effective method to achieve rare-earth doped oxysulfide phosphors with diversified and tunable luminescence properties through morphology control.


2022 ◽  
pp. 271-318
Author(s):  
Tatiana A. Lastovina ◽  
Ekaterina O. Podlesnaia ◽  
Andriy P. Budnyk
Keyword(s):  

2022 ◽  
Author(s):  
Guolin Wu ◽  
Jun Wang ◽  
JinJing Wang ◽  
Zan Feng ◽  
Junkai Sheng ◽  
...  

2022 ◽  
Vol 71 (2) ◽  
pp. 027801-027801
Author(s):  
Meng Yong-Jun ◽  
◽  
Li Hong ◽  
Tang Jian-Wei ◽  
Chen Xue-Wen

2022 ◽  
Vol 130 (1) ◽  
pp. 33
Author(s):  
Kieran M. Smith ◽  
Michael F. Reid ◽  
Jon-Paul R. Wells

We report Zeeman infra-red spectroscopy of electronic-nuclear levels of 5I8 →5I7 transitions of Ho3+ in the C4v(F−) centre in CaF2 with the magnetic field along the ⟨111⟩ direction of the crystal. Transitions to the lowest 5I7 state, an isolated electronic doublet, and the next group of states, a pseudo-quadruplet consisting of a doublet and two nearby singlets, exhibit strongly non-linear Zeeman splittings and intensity variations. Simulated spectra based upon a crystal-field analysis give an excellent approximation to the data, illustrating the strong predictive ability of the parametrised crystal-field approach. Anti-crossings in the hyperfine splittings, the basis of quantum information storage in rare-earth doped insulating dielectrics, are also predicted.


Sign in / Sign up

Export Citation Format

Share Document