Baseline surface- and groundwater monitoring prior to an onshore shale gas operation in the Vale of Pickering, UK

Author(s):  
Eleanor Raper ◽  
David Banks ◽  
Joe Shipperbottom ◽  
Phil Ham

A comprehensive programme of baseline groundwater hydrochemical monitoring has been carried out in connection with the proposed hydraulic fracturing of a 2 to 3 km deep Bowland Shale gas reservoir in borehole KM8 at Kirby Misperton, North Yorkshire, UK. The monitoring infrastructure encompassed: five on-site boreholes with hydraulically open intervals ranging from shallow weathered cover to a c. 200 m deep Corallian limestone aquifer, six off-site wells (hydraulically open in superficial materials and/or Kimmeridge Clay) and four surface water monitoring stations. Groundwater chemistry was high stratified with depth, ranging from slightly acidic, fresh, very hard Ca-HCO3-SO4 waters in shallow weathered cover, to brackish, calcium-depleted, highly alkaline waters in the Corallian aquifer. Dissolved methane was detected in most boreholes, with 10 µg/L being typical of shallow boreholes and around 50 mg/L in the Corallian. Low ethane concentrations and isotopic evidence suggest that the methane was predominantly microbial in origin (carboxylate fermentation at shallow depth, natural methanogenic CO2 reduction at greater depth). Elevated dissolved ethane (20-30 µg/L) was found in one well of intermediate depth, suggesting admixture of a possible thermogenic component, although this could be derived directly from the Kimmeridge Clay penetrated by the well.

2012 ◽  
Author(s):  
Chen Mingzhong ◽  
Qian Bing ◽  
Ou Zhilin ◽  
Zhang juncheng ◽  
Jiang Hai ◽  
...  

2021 ◽  
Author(s):  
Mingjun Chen ◽  
Peisong Li ◽  
Yili Kang ◽  
Xinping Gao ◽  
Dongsheng Yang ◽  
...  

Abstract The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.


2018 ◽  
Author(s):  
Yongfei Li ◽  
Yanling Wang ◽  
Longhao Tang ◽  
Lin Yuan ◽  
Chuanbao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document