First report of fish trace fossils (Undichna) from the Middle Devonian Achanarras Limestone, Caithness Flagstone Group

2021 ◽  
pp. sjg2020-023
Author(s):  
Benjamin H. Tindal ◽  
Anthony P. Shillito ◽  
Neil S. Davies

Two newly-discovered specimens of the fish locomotion trace Undichna (U. britannica and Undichna isp.), are described from the Middle Devonian Achanarras Limestone Member (Caithness Flagstone Group, NE Scotland). Fish trace fossils have not previously been reported from the Achanarras Limestone Member, despite decades of study of the unit as a key locality for fish body fossils. The traces comprise discontinuous sinusoidal grooves; one showing multiple parallel incisions, created by the fins of an acanthodian fish swimming close to the substrate. The apparent absence of trace fossils attributable to infaunal or epifaunal benthic organisms suggests that the sediment at the bottom of the lake was relatively inhospitable. The low ichnodiversity of the Achanarras Limestone Member is likely due to low oxygen levels in the depositional environment.Thematic collection: This article is part of the Early Career Research collection available at: https://www.lyellcollection.org/cc/SJG-early-career-research

2020 ◽  
Vol 57 (1) ◽  
pp. sjg2020-013
Author(s):  
Kim J. Kean ◽  
Davide Foffa ◽  
Michela M. Johnson ◽  
Mark T. Young ◽  
Gert Greitens ◽  
...  

The Jurassic was a key interval for the evolution of dinosaurs, crocodylomorphs and many other vertebrate groups. In recent years, new vertebrate fossils have emerged from the Early–Middle Jurassic of the Isle of Skye, Scotland; however, much more is known about Skye's dinosaur fauna than its crocodylomorphs. Here we report new crocodylomorph material collected from Jurassic marine deposits at Prince Charlie's Cave on the NE coast of Skye. The specimen is a small cobble containing postcranial elements from an individual that is considerably larger in size than previous crocodylomorphs described from Skye. Based on features of the vertebrae and osteoderms, the specimen is assigned to Thalattosuchia, an extinct clade of semi-aquatic/pelagic crocodylomorphs. Specifically, the sub-circular and bean-shaped pit ornamentation on the dorsal surface of the osteoderms in alternating rows suggests affinities with the semi-aquatic lineage Teleosauroidea. Although the ornamentation pattern on the osteoderms is most similar to Macrospondylus (‘Steneosaurus’) bollensis, we conservatively assign the specimen to Teleosauroidea indeterminate. Regardless of its precise affinities and fragmentary nature, the specimen is the first thalattosuchian discovered in Scotland and is the most northerly reported Jurassic thalattosuchian globally, adding to our understanding of the palaeobiogeography and evolution of this group.Thematic collection: This article is part of the Early Career Research collection available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2021 ◽  
Vol 57 (1) ◽  
pp. sjg2020-010
Author(s):  
M. B. Jonkman

Abrasion and plucking are important subglacial erosional processes that create different landforms. This study shows that properties of bedrock control subglacial erosion and bedrock morphology. Softer and less-jointed bedrock favours abrasion, while denser-jointed bedrock and harder bedrock do not. Field work for this study was carried out near Drumnadrochit in Inverness-shire, where the lithology, geology and morphology of rôches moutonnées and crag-and-tails were examined. In this area, the rôches moutonnées, which have an abraded stoss side, are only shaped out of a relatively soft, biotite-rich gneiss, with not much jointing. The crag-and-tails have more densely jointed stoss sides and are shaped out of serpentinite or a harder, more felsic gneiss. Foliation appears not to influence subglacial erosion, since the foliation in rôches moutonnées and crag-and-tails in the study area is similar.Thematic collection: This article is part of the Early Career Research collection available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2020 ◽  
Vol 56 (2) ◽  
pp. 117-133
Author(s):  
Serena Tarlati ◽  
S. Benetti ◽  
S.L. Callard ◽  
C. Ó Cofaigh ◽  
P. Dunlop ◽  
...  

During the last glacial maximum, the British–Irish Ice Sheet (BIIS) extended to the shelf edge in the Malin Sea between Ireland and Scotland, delivering sediments to the Donegal Barra Fan (DBF). Analysis of well-preserved, glacially derived sediment in the DBF provides new insights on the character of the BIIS final deglaciation and palaeoenvironmental conditions at the Younger Dryas. Chaotic/laminated muds, ice-rafted debris (IRD)-rich layers and laminated sand–mud couplets are interpreted as respectively mass transport deposits, plumites and turbidites of BIIS-transported sediments. Peaks in IRD, constrained by radiocarbon dating to after 18 cal ka BP, indicate discrete intervals of iceberg calving during the last stages of deglaciation. Glacially derived sedimentation on the slope occurred until c. 16.9 cal ka BP. This is interpreted as the last time the ice sheet was present on to the shelf, allowing glacial meltwater to reach the fan. Bioturbated and foraminifera-rich muds above glaciomarine sediments are interpreted as interglacial hemipelagites and contourites, with the presence of Zoophycos suggesting restoration of bottom currents at the transition between stadial and interstadial conditions. During the Younger Dryas, Neogloboquadrina pachyderma sinistral abundances and an isolated peak in IRD indicate the temporary restoration of cold conditions and the presence of icebergs in the region.Thematic collection: This article is part of the Early Career Research collection available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2019 ◽  
Vol 56 (1) ◽  
pp. 30-46 ◽  
Author(s):  
Ashley M. Abrook ◽  
Ian P. Matthews ◽  
Alice M. Milner ◽  
Ian Candy ◽  
Adrian P. Palmer ◽  
...  

The Last Glacial–Interglacial Transition (LGIT) is a period of climatic complexity where millennial-scale climatic reorganization led to changes in ecosystems. Alongside millennial-scale changes, centennial-scale climatic events have been observed within records from Greenland and continental Europe. The effects of these abrupt events on landscapes and environments are difficult to discern at present. This, in part, relates to low temporal resolutions attained by many studies and the sensitivity of palaeoenvironmental proxies to abrupt change. We present a high-resolution palynological and charcoal study of Quoyloo Meadow, Orkney and use the Principal Curve statistical method to assist in revealing biostratigraphic change. The LGIT vegetation succession on Orkney is presented as open grassland and Empetrum heath during the Windermere Interstadial and early Holocene, and open grassland with Artemisia during the Loch Lomond Stadial. However, a further three phases of ecological change, characterized by expansions of open ground flora, are dated to 14.05–13.63, 10.94–10.8 and 10.2 cal ka BP. The timing of these changes is constrained by cryptotephra of known age. The paper concludes by comparing Quoyloo Meadow with Crudale Meadow, Orkney, and suggests that both Windermere Interstadial records are incomplete and that fire is an important landscape control during the early Holocene.Supplementary material: All raw data associated with this publication: raw pollen counts, charcoal data, Principal Curve and Rate of Change outputs and the age-model output are available at https://doi.org/10.6084/m9.figshare.c.4725269Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2020 ◽  
Vol 56 (2) ◽  
pp. 101-116
Author(s):  
Dina M. Fieman ◽  
Mikaël Attal ◽  
Stephen Addy

This study uses the 2015 ‘Storm Frank’ flood on the River Dee, Aberdeenshire, to assess the impact of extreme events on river dynamics. The Storm Frank flood (>200 year recurrence interval) caused significant local morphological change that was concentrated in the middle portion of the 140 km long river and overall net degradation that primarily occurred through lateral adjustment processes. Although the flood did not cause widespread change in channel planform, morphological change at the reach scale (<1 km) was significant. Bank scour resulted in channel expansion and lateral migration as well as widespread aggradation on existing gravel beds. The HEC-RAS and CAESAR–Lisflood models were used to determine the impact of morphological changes from the Storm Frank flood on a series of future hypothetical floods. The results show that inundation is highly influenced by the degree of morphological change for moderate floods, but not for high magnitude ones. In-channel scour and bank erosion can lead to an increase in channel capacity, thereby decreasing inundation. Conversely, where conveyance capacity is decreased by aggradation, flood risk inherently increases. The impact of these changes was great for a five-year return period flood, but minimal for a magnitude flood comparable to that of Storm Frank. Our modelling results also reveal that the inundation model is sensitive to the grain size and channel bed roughness input parameters, as these parameters impact flow discharge and flood hydraulics. Accurate determination of sediment parameters and degree of morphological change is therefore critical in flooding modelling and flood hazard management.Supplementary material: Peak discharge and rainfall during the 2015 Storm Frank storm, parameters used in the hydrological model CAESAR–Lisflood and sediment budget statistics of each DEM of difference threshold are available at: https://doi.org/10.6084/m9.figshare.c.4847946Thematic collection: This article is part of the Early Career Research collection available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2019 ◽  
Vol 56 (1) ◽  
pp. 1-29 ◽  
Author(s):  
William J. McMahon ◽  
Neil S. Davies

In modern rivers, vegetation affects hydrological, geomorphological and sedimentological functioning, so extant fluvial systems can provide only partial analogues for those rivers that operated before the evolution of land plants. However, pre-vegetation rivers were the norm for the first 90% of Earth's history and so a better understanding of their sedimentary product can provide insights into both the fundamental underlying mechanisms of river behaviour and the ways in which fluvial processes operated on ancient Earth. In addition to a short review of the history of research into pre-vegetation alluvium, this paper presents a fieldwork-based case study of the later Proterozoic Torridon Group, which contains some of the most extensive and easily accessible exposures of pre-vegetation alluvium worldwide. Three alluvial architectural deposits have been recognized: (1) channel-bedform deposits (c. 80%); (2) barform deposits (c. 20%); and (3) out-of-channel deposits (≪1%). Channel-bedform deposits have erosional bases and most frequently stack vertically to form thick multistorey channel-bedform sequences. The preferential preservation of these deposits, which record the deepest parts of river channels, suggests that channel migration had a dominant control on preservation in the Torridon Group. Less frequently, channel-bedform deposits pass upwards into a genetically related barform deposit. Barform preservation in these instances is interpreted to be due to channel avulsion, which protected the barforms from reworking. Channel-bar thickness, measured from the basal erosional surface of a channel-bedform deposit to the top of its associated barform deposit, indicates minimum water depths of 1.7 to 8.0 m. Downstream-accreting barform deposits are most frequent, but lateral and upstream modes of accretion are also well represented. Dominant southeastward-palaeoflow directions imply that the Torridonian rivers were sourced from the Grenvillian Mountain Belt. The preserved architectural deposits and narrow dispersal of palaeocurrent data are explained by interpreting the Torridon Group as the alluvium of dominantly low-sinuosity rivers, with signatures recording autogenic fluvial adjustments. In the few rare instances where out-of-channel deposits are preserved, they contain fossil evidence for microbial mats, which prove that not all Proterozoic river systems were wholly abiotic. The overall characteristics of the Torridon alluvium, in terms of its ubiquitous highly tabular beds of sand-grade or coarser material, make it an archetypal example of pre-vegetation alluvium as known globally.Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research


Author(s):  
Joanne Pransky

Purpose – This article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry engineer-turned entrepreneur regarding the evolution, commercialization and challenges of bringing a technological invention to market. Design/methodology/approach – The interviewee is Dr Yoky Matsuoka, the Vice President of Nest Labs. Matsuoka describes her career journey that led her from a semi-professional tennis player who wanted to build a robot tennis buddy, to a pioneer of neurobotics who then applied her multidisciplinary research in academia to the development of a mass-produced intelligent home automation device. Findings – Dr Matsuoka received a BS degree from the University of California, Berkeley and an MS and PhD in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT). She was also a Postdoctoral Fellow in the Brain and Cognitive Sciences at MIT and in Mechanical Engineering at Harvard University. Dr Matsuoka was formerly the Torode Family Endowed Career Development Professor of Computer Science and Engineering at the University of Washington (UW), Director of the National Science Foundation Engineering Research Center for Sensorimotor Neural Engineering and Ana Loomis McCandless Professor of Robotics and Mechanical Engineering at Carnegie Mellon University. In 2010, she joined Google X as one of its three founding members. She then joined Nest as VP of Technology. Originality/value – Dr Matsuoka built advanced robotic prosthetic devices and designed complementary rehabilitation strategies that enhanced the mobility of people with manipulation disabilities. Her novel work has made significant scientific and engineering contributions in the combined fields of mechanical engineering, neuroscience, bioengineering, robotics and computer science. Dr Matsuoka was awarded a MacArthur Fellowship in which she used the Genius Award money to establish a nonprofit corporation, YokyWorks, to continue developing engineering solutions for humans with physical disabilities. Other awards include the Emerging Inventor of the Year, UW Medicine; IEEE Robotics and Automation Society Early Academic Career Award; Presidential Early Career Award for Scientists and Engineers; and numerous others. She leads the development of the learning and control technology for the Nest smoke detector and Thermostat, which has saved the USA hundreds of billions of dollars in energy expenses. Nest was sold to Google in 2013 for a record $3.2 billion dollars in cash.


2012 ◽  
Vol 86 (2) ◽  
pp. 282-301 ◽  
Author(s):  
Jan Bohatý ◽  
William I. Ausich ◽  
Elise Nardin ◽  
Christian Nyhuis ◽  
Stefan Schröder

Fossil echinoderms are a rich source of information concerning biotic interactions. In this study we analyzed the premortem encrustation of the highly specialized Middle Devonian rugose coralsAspasmophyllum crinophilumand ?“Adradosia” sp. on camerate crinoid stems.Aspasmophylluminfested living crinoid stems by sclerenchymal outgrowth that formed a skeletal ring but ?“Adradosia” sp. encrusted the stems rapidly, without building a ring. These coral-crinoid biocoenoses indicate a settlement advantage for the rugose corals within densely populated communities of the lower Givetian. The corals could be interpreted as large epizoozoans that benefited as secondary tierers reaching relatively high tiering levels. It also suggests the ability for the affected crinoids to repel the coral by overgrowing the corallite with a local increased stereomic growth. Because the crinoid axial canals are not penetrated, the corals cannot be considered as predators or parasites of crinoids. Therefore, the described biocoenosis is interpreted as commensalism. The speciesA. crinophilumis redescribed, and a neotype is defined, because of the loss of the initial types. Two types of ichnofossils can be attributed to the premortem encrustation of both corals. They are described asOstiocavichnusn. ichnogen. and are attributed to the stereomic response of the infested hosts. These swellings are characterized as either elliptical (Ostiocavichnus ovalisn. ichnogen. n. ichnosp. due to the assumed reaction ofA. crinophilum) or subcircular concavities (O. rotundatusn. ichnogen. n. ichnosp. due to the reaction of ?“Adradosiasp.”).


Sign in / Sign up

Export Citation Format

Share Document