Consecutive customer loss probabilities in M/G/1/n and GI/M(m)//n systems

Author(s):  
António Pacheco ◽  
Helena Ribeiro
Keyword(s):  
1999 ◽  
Vol 5 (4) ◽  
pp. 329-348
Author(s):  
Boo Yong Ahn ◽  
Ho Woo Lee

We model the error control of the partial buffer sharing of ATM by a queueing systemM1,M2/G/1/K+1with threshold and instantaneous Bernoulli feedback. We first derive the system equations and develop a recursive method to compute the loss probabilities at an arbitrary time epoch. We then build an approximation scheme to compute the mean waiting time of each class of cells. An algorithm is developed for finding the optimal threshold and queue capacity for a given quality of service.


1999 ◽  
Vol 10 (1) ◽  
pp. 33-43
Author(s):  
Lru Xiaoming ◽  
Liu Liming ◽  
Brahim Bensaou ◽  
Danny H. K. Tsang

1994 ◽  
Vol 26 (2) ◽  
pp. 456-473 ◽  
Author(s):  
J. A. Morrison

In this paper a particular loss network consisting of two links with C1 and C2 circuits, respectively, and two fixed routes, is investigated. A call on route 1 uses a circuit from both links, and a call on route 2 uses a circuit from only the second link. Calls requesting routes 1 and 2 arrive as independent Poisson streams. A call requesting route 1 is blocked and lost if there are no free circuits on either link, and a call requesting route 2 is blocked and lost if there is no free circuit on the second link. Otherwise the call is connected and holds a circuit from each link on its route for the holding period of the call.The case in which the capacities C1, and C2, and the traffic intensities v1, and v2, all become large of O(N) where N » 1, but with their ratios fixed, is considered. The loss probabilities L1 and L2 for calls requesting routes 1 and 2, respectively, are investigated. The asymptotic behavior of L1 and L2 as N→ ∞ is determined with the help of double contour integral representations and saddlepoint approximations. The results differ in various regions of the parameter space (C1, C2, v1, v2). In some of these results the loss probabilities are given in terms of the Erlang loss function, with appropriate arguments, to within an exponentially small relative error. The results provide new information when the loss probabilities are exponentially small in N. This situation is of practical interest, e.g. in cellular systems, and in asynchronous transfer mode networks, where very small loss probabilities are desired.The accuracy of the Erlang fixed-point approximations to the loss probabilities is also investigated. In particular, it is shown that the fixed-point approximation E2 to L2 is inaccurate in a certain region of the parameter space, since L2 « E2 there. On the other hand, in some regions of the parameter space the fixed-point approximations to both L1 and L2 are accurate to within an exponentially small relative error.


1999 ◽  
Vol 36 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Nikolay Likhanov ◽  
Ravi R. Mazumdar

In this paper we derive asymptotically exact expressions for buffer overflow probabilities and cell loss probabilities for a finite buffer which is fed by a large number of independent and stationary sources. The technique is based on scaling, measure change and local limit theorems and extends the recent results of Courcoubetis and Weber on buffer overflow asymptotics. We discuss the cases when the buffers are of the same order as the transmission bandwidth as well as the case of small buffers. Moreover we show that the results hold for a wide variety of traffic sources including ON/OFF sources with heavy-tailed distributed ON periods, which are typical candidates for so-called ‘self-similar’ inputs, showing that the asymptotic cell loss probability behaves in much the same manner for such sources as for the Markovian type of sources, which has important implications for statistical multiplexing. Numerical validation of the results against simulations are also reported.


2010 ◽  
Vol 107 (10) ◽  
pp. 103310 ◽  
Author(s):  
Chang Sung Moon ◽  
Keigo Takeda ◽  
Seigo Takashima ◽  
Makoto Sekine ◽  
Yuichi Setsuhara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document