On the accuracy of approximating loss probabilities in finite queues by probabilities to exceed queue levels in infinite queues

Author(s):  
F. Huebner
1991 ◽  
Vol 5 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
J. George Shanthikumar

The loss probabilities of customers in the Mx/GI/1/k, GI/Mx/l/k and their related queues such as server vacation models are compared with respect to the convex order of several characteristics, for example, batch size, of the arrival or service process. In the proof, we give a characterization of a truncation expression for a stationary distribution of a finite Markov chain, which is interesting in itself.


2012 ◽  
Vol 44 (12) ◽  
pp. 43-54 ◽  
Author(s):  
Agasi Zarbali ogly Melikov ◽  
Leonid A. Ponomarenko ◽  
Che Soong Kim

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


1999 ◽  
Vol 5 (4) ◽  
pp. 329-348
Author(s):  
Boo Yong Ahn ◽  
Ho Woo Lee

We model the error control of the partial buffer sharing of ATM by a queueing systemM1,M2/G/1/K+1with threshold and instantaneous Bernoulli feedback. We first derive the system equations and develop a recursive method to compute the loss probabilities at an arbitrary time epoch. We then build an approximation scheme to compute the mean waiting time of each class of cells. An algorithm is developed for finding the optimal threshold and queue capacity for a given quality of service.


1999 ◽  
Vol 10 (1) ◽  
pp. 33-43
Author(s):  
Lru Xiaoming ◽  
Liu Liming ◽  
Brahim Bensaou ◽  
Danny H. K. Tsang

1994 ◽  
Vol 26 (2) ◽  
pp. 456-473 ◽  
Author(s):  
J. A. Morrison

In this paper a particular loss network consisting of two links with C1 and C2 circuits, respectively, and two fixed routes, is investigated. A call on route 1 uses a circuit from both links, and a call on route 2 uses a circuit from only the second link. Calls requesting routes 1 and 2 arrive as independent Poisson streams. A call requesting route 1 is blocked and lost if there are no free circuits on either link, and a call requesting route 2 is blocked and lost if there is no free circuit on the second link. Otherwise the call is connected and holds a circuit from each link on its route for the holding period of the call.The case in which the capacities C1, and C2, and the traffic intensities v1, and v2, all become large of O(N) where N » 1, but with their ratios fixed, is considered. The loss probabilities L1 and L2 for calls requesting routes 1 and 2, respectively, are investigated. The asymptotic behavior of L1 and L2 as N→ ∞ is determined with the help of double contour integral representations and saddlepoint approximations. The results differ in various regions of the parameter space (C1, C2, v1, v2). In some of these results the loss probabilities are given in terms of the Erlang loss function, with appropriate arguments, to within an exponentially small relative error. The results provide new information when the loss probabilities are exponentially small in N. This situation is of practical interest, e.g. in cellular systems, and in asynchronous transfer mode networks, where very small loss probabilities are desired.The accuracy of the Erlang fixed-point approximations to the loss probabilities is also investigated. In particular, it is shown that the fixed-point approximation E2 to L2 is inaccurate in a certain region of the parameter space, since L2 « E2 there. On the other hand, in some regions of the parameter space the fixed-point approximations to both L1 and L2 are accurate to within an exponentially small relative error.


Sign in / Sign up

Export Citation Format

Share Document