Strategic information diffusion through online social networks

Author(s):  
Jen-Ping Huang ◽  
Chih-Yu Wang ◽  
Hung-Yu Wei
Author(s):  
Dmitry Zinoviev

The issue of information diffusion in small-world social networks was first systematically brought to light by Mark Granovetter in his seminal paper “The Strength of Weak Ties” in 1973 and has been an area of active academic studies in the past three decades. This chapter discusses information proliferation mechanisms in massive online social networks (MOSN). In particular, the following aspects of information diffusion processes are addressed: the role and the strategic position of influential spreaders of information; the pathways in the social networks that serve as conduits for communication and information flow; mathematical models describing proliferation processes; short-term and long-term dynamics of information diffusion, and secrecy of information diffusion.


2020 ◽  
Vol 34 (10) ◽  
pp. 13730-13731
Author(s):  
Ece C. Mutlu

This doctoral consortium presents an overview of my anticipated PhD dissertation which focuses on employing quantum Bayesian networks for social learning. The project, mainly, aims to expand the use of current quantum probabilistic models in human decision-making from two agents to multi-agent systems. First, I cultivate the classical Bayesian networks which are used to understand information diffusion through human interaction on online social networks (OSNs) by taking into account the relevance of multitude of social, psychological, behavioral and cognitive factors influencing the process of information transmission. Since quantum like models require quantum probability amplitudes, the complexity will be exponentially increased with increasing uncertainty in the complex system. Therefore, the research will be followed by a study on optimization of heuristics. Here, I suggest to use an belief entropy based heuristic approach. This research is an interdisciplinary research which is related with the branches of complex systems, quantum physics, network science, information theory, cognitive science and mathematics. Therefore, findings can contribute significantly to the areas related mainly with social learning behavior of people, and also to the aforementioned branches of complex systems. In addition, understanding the interactions in complex systems might be more viable via the findings of this research since probabilistic approaches are not only used for predictive purposes but also for explanatory aims.


Sign in / Sign up

Export Citation Format

Share Document