A survey in the area of machine learning and its application for software quality prediction

2012 ◽  
Vol 37 (5) ◽  
pp. 1-7 ◽  
Author(s):  
Ekbal Rashid ◽  
Srikanta Patnayak ◽  
Vandana Bhattacherjee

To improve the software quality the number of errors or faults must be removed from the software. This chapter presents a study towards machine learning and software quality prediction as an expert system. The purpose of this chapter is to apply the machine learning approaches such as case-based reasoning to predict software quality. Five different similarity measures, namely, Euclidean, Canberra, Exponential, Clark and Manhattan are used for retrieving the matching cases from the knowledgebase. The use of different similarity measures to find the best method significantly increases the estimation accuracy and reliability. Based on the research findings in this book it can be concluded that applying similarity measures in case-based reasoning may be a viable technique for software fault prediction


2020 ◽  
Vol 11 (2) ◽  
pp. 20-40
Author(s):  
Somya Goyal ◽  
Pradeep Kumar Bhatia

Software quality prediction is one the most challenging tasks in the development and maintenance of software. Machine learning (ML) is widely being incorporated for the prediction of the quality of a final product in the early development stages of the software development life cycle (SDLC). An ML prediction model uses software metrics and faulty data from previous projects to detect high-risk modules for future projects, so that the testing efforts can be targeted to those specific ‘risky' modules. Hence, ML-based predictors contribute to the detection of development anomalies early and inexpensively and ensure the timely delivery of a successful, failure-free and supreme quality software product within budget. This article has a comparison of 30 software quality prediction models (5 technique * 6 dataset) built on five ML techniques: artificial neural network (ANN); support vector machine (SVMs); Decision Tree (DTs); k-Nearest Neighbor (KNN); and Naïve Bayes Classifiers (NBC), using six datasets: CM1, KC1, KC2, PC1, JM1, and a combined one. These models exploit the predictive power of static code metrics, McCabe complexity metrics, for quality prediction. All thirty predictors are compared using a receiver operator curve (ROC), area under the curve (AUC), and accuracy as performance evaluation criteria. The results show that the ANN technique for software quality prediction is promising for accurate quality prediction irrespective of the dataset used.


Sign in / Sign up

Export Citation Format

Share Document