Approximate block coordinate descent for large scale hierarchical classification

Author(s):  
Anveshi Charuvaka ◽  
Huzefa Rangwala
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Fanhua Shang ◽  
Zhihui Zhang ◽  
Yuanyuan Liu ◽  
Hongying Liua ◽  
Jing Xu

2018 ◽  
Vol 272 ◽  
pp. 471-480 ◽  
Author(s):  
Xiangfeng Wang ◽  
Wenjie Zhang ◽  
Junchi Yan ◽  
Xiaoming Yuan ◽  
Hongyuan Zha

Author(s):  
Deqing Wang ◽  
Zheng Chang ◽  
Fengyu Cong

AbstractNonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be explicitly controlled without additional regularization. In this paper, we investigated the nonnegative CANDECOMP/PARAFAC (NCP) decomposition with the sparse regularization item using $$l_1$$ l 1 -norm (sparse NCP). When high sparsity is imposed, the factor matrices will contain more zero components and will not be of full column rank. Thus, the sparse NCP is prone to rank deficiency, and the algorithms of sparse NCP may not converge. In this paper, we proposed a novel model of sparse NCP with the proximal algorithm. The subproblems in the new model are strongly convex in the block coordinate descent (BCD) framework. Therefore, the new sparse NCP provides a full column rank condition and guarantees to converge to a stationary point. In addition, we proposed an inexact BCD scheme for sparse NCP, where each subproblem is updated multiple times to speed up the computation. In order to prove the effectiveness and efficiency of the sparse NCP with the proximal algorithm, we employed two optimization algorithms to solve the model, including inexact alternating nonnegative quadratic programming and inexact hierarchical alternating least squares. We evaluated the proposed sparse NCP methods by experiments on synthetic, real-world, small-scale, and large-scale tensor data. The experimental results demonstrate that our proposed algorithms can efficiently impose sparsity on factor matrices, extract meaningful sparse components, and outperform state-of-the-art methods.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 540
Author(s):  
Soodabeh Asadi ◽  
Janez Povh

This article uses the projected gradient method (PG) for a non-negative matrix factorization problem (NMF), where one or both matrix factors must have orthonormal columns or rows. We penalize the orthonormality constraints and apply the PG method via a block coordinate descent approach. This means that at a certain time one matrix factor is fixed and the other is updated by moving along the steepest descent direction computed from the penalized objective function and projecting onto the space of non-negative matrices. Our method is tested on two sets of synthetic data for various values of penalty parameters. The performance is compared to the well-known multiplicative update (MU) method from Ding (2006), and with a modified global convergent variant of the MU algorithm recently proposed by Mirzal (2014). We provide extensive numerical results coupled with appropriate visualizations, which demonstrate that our method is very competitive and usually outperforms the other two methods.


Sign in / Sign up

Export Citation Format

Share Document