projected gradient method
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2092 (1) ◽  
pp. 012001
Author(s):  
Yu Jiang ◽  
Gen Nakamura ◽  
Kenji Shirota

Abstract This paper deals with an inverse problem for recovering the viscoelasticity of a living body from MRE (Magnetic Resonance Elastography) data. Based on a viscoelastic partial differential equation whose solution can approximately simulate MRE data, the inverse problem is transformed to a least square variational problem. This is to search for viscoelastic coefficients of this equation such that the solution to a boundary value problem of this equation fits approximately to MRE data with respect to the least square cost function. By computing the Gateaux derivatives of the cost function, we minimize the cost function by the projected gradient method is proposed for recovering the unknown coefficients. The reconstruction results based on simulated data and real experimental data are presented and discussed.


Author(s):  
Lei Guo ◽  
Zhibin Deng

We propose a new augmented Lagrangian (AL) method for solving the mathematical program with complementarity constraints (MPCC), where the complementarity constraints are left out of the AL function and treated directly. Two observations motivate us to propose this method: The AL subproblems are closer to the original problem in terms of the constraint structure; and the AL subproblems can be solved efficiently by a nonmonotone projected gradient method, in which we have closed-form solutions at each iteration. The former property helps us show that the proposed method converges globally to an M-stationary (better than C-stationary) point under MPCC relaxed constant positive linear dependence condition. Theoretical comparison with existing AL methods demonstrates that the proposed method is superior in terms of the quality of accumulation points and the strength of assumptions. Numerical comparison, based on problems in MacMPEC, validates the theoretical results.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1757
Author(s):  
Bingjie Li ◽  
Xi Shi ◽  
Zhenyue Zhang

As a special class of non-negative matrix factorization, symmetric non-negative matrix factorization (SymNMF) has been widely used in the machine learning field to mine the hidden non-linear structure of data. Due to the non-negative constraint and non-convexity of SymNMF, the efficiency of existing methods is generally unsatisfactory. To tackle this issue, we propose a two-phase algorithm to solve the SymNMF problem efficiently. In the first phase, we drop the non-negative constraint of SymNMF and propose a new model with penalty terms, in order to control the negative component of the factor. Unlike previous methods, the factor sequence in this phase is not required to be non-negative, allowing fast unconstrained optimization algorithms, such as the conjugate gradient method, to be used. In the second phase, we revisit the SymNMF problem, taking the non-negative part of the solution in the first phase as the initial point. To achieve faster convergence, we propose an interpolation projected gradient (IPG) method for SymNMF, which is much more efficient than the classical projected gradient method. Our two-phase algorithm is easy to implement, with convergence guaranteed for both phases. Numerical experiments show that our algorithm performs better than others on synthetic data and unsupervised clustering tasks.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 540
Author(s):  
Soodabeh Asadi ◽  
Janez Povh

This article uses the projected gradient method (PG) for a non-negative matrix factorization problem (NMF), where one or both matrix factors must have orthonormal columns or rows. We penalize the orthonormality constraints and apply the PG method via a block coordinate descent approach. This means that at a certain time one matrix factor is fixed and the other is updated by moving along the steepest descent direction computed from the penalized objective function and projecting onto the space of non-negative matrices. Our method is tested on two sets of synthetic data for various values of penalty parameters. The performance is compared to the well-known multiplicative update (MU) method from Ding (2006), and with a modified global convergent variant of the MU algorithm recently proposed by Mirzal (2014). We provide extensive numerical results coupled with appropriate visualizations, which demonstrate that our method is very competitive and usually outperforms the other two methods.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Maurizio Ruggiu ◽  
Andreas Müller

Kinematic redundancy of manipulators is a well-understood topic, and various methods were developed for the redundancy resolution in order to solve the inverse kinematics problem, at least for serial manipulators. An important question, with high practical relevance, is whether the inverse kinematics solution is cyclic, i.e., whether the redundancy solution leads to a closed path in joint space as a solution of a closed path in task space. This paper investigates the cyclicity property of two widely used redundancy resolution methods, namely the projected gradient method (PGM) and the augmented Jacobian method (AJM), by means of examples. Both methods determine solutions that minimize an objective function, and from an application point of view, the sensitivity of the methods on the initial configuration is crucial. Numerical results are reported for redundant serial robotic arms and for redundant parallel kinematic manipulators. While the AJM is known to be cyclic, it turns out that also the PGM exhibits cyclicity. However, only the PGM converges to the local optimum of the objective function when starting from an initial configuration of the cyclic trajectory.


Sign in / Sign up

Export Citation Format

Share Document