multiclass classification
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 194)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Ivan Stebakov ◽  
Alexey Kornaev ◽  
Sergey Popov ◽  
Leonid Savin

The paper deals with the application of deep learning methods to rotating machines fault diagnosis. The main challenge is to design a fault diagnosis system connected with multisensory measurement system that will be sensitive and accurate enough in detecting weak changes in rotating machines. The experimental part of the research presents the test rig and results of high-speed multisensory measurements. Six states of a rotating machine, including a normal one and five states with loosened mounting bolts and small unbalancing of the shaft, are under study. The application of deep network architectures including multilayer perceptron, convolutional neural networks, residual networks, autoencoders and their combination was estimated. The deep learning methods allowed to identify the most informative sensors, then solve the anomaly detection and the multiclass classification problems. An autoencoder based on ResNet architecture demonstrated the best result in anomaly detection. The accuracy of the proposed network is up to 100% while the accuracy of an expert is up to 65%. A one-dimensional convolutional neural network combined with a multilayer perceptron that contains a pretrained encoder demonstrated the best result in multiclass classification. The detailed fault detection accuracy with the determination of the specific fault is 83.3%. The combinations of known deep network architectures and application of the proposed approach of pretraining of the encoders together with using a block of inputs for one prediction demonstrated high efficiency.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Hamid Nasiri ◽  
Seyed Ali Alavi

Background and Objective. The new coronavirus disease (known as COVID-19) was first identified in Wuhan and quickly spread worldwide, wreaking havoc on the economy and people’s everyday lives. As the number of COVID-19 cases is rapidly increasing, a reliable detection technique is needed to identify affected individuals and care for them in the early stages of COVID-19 and reduce the virus’s transmission. The most accessible method for COVID-19 identification is Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR); however, it is time-consuming and has false-negative results. These limitations encouraged us to propose a novel framework based on deep learning that can aid radiologists in diagnosing COVID-19 cases from chest X-ray images. Methods. In this paper, a pretrained network, DenseNet169, was employed to extract features from X-ray images. Features were chosen by a feature selection method, i.e., analysis of variance (ANOVA), to reduce computations and time complexity while overcoming the curse of dimensionality to improve accuracy. Finally, selected features were classified by the eXtreme Gradient Boosting (XGBoost). The ChestX-ray8 dataset was employed to train and evaluate the proposed method. Results and Conclusion. The proposed method reached 98.72% accuracy for two-class classification (COVID-19, No-findings) and 92% accuracy for multiclass classification (COVID-19, No-findings, and Pneumonia). The proposed method’s precision, recall, and specificity rates on two-class classification were 99.21%, 93.33%, and 100%, respectively. Also, the proposed method achieved 94.07% precision, 88.46% recall, and 100% specificity for multiclass classification. The experimental results show that the proposed framework outperforms other methods and can be helpful for radiologists in the diagnosis of COVID-19 cases.


2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Tong Gao ◽  
Hao Chen ◽  
Wen Chen

The support tensor machine (STM) extended from support vector machine (SVM) can maintain the inherent information of remote sensing image (RSI) represented as tensor and obtain effective recognition results using a few training samples. However, the conventional STM is binary and fails to handle multiclass classification directly. In addition, the existing STMs cannot process objects with different sizes represented as multiscale tensors and have to resize object slices to a fixed size, causing excessive background interferences or loss of object’s scale information. Therefore, the multiclass multiscale support tensor machine (MCMS-STM) is proposed to recognize effectively multiclass objects with different sizes in RSIs. To achieve multiclass classification, by embedding one-versus-rest and one-versus-one mechanisms, multiple hyperplanes described by rank-R tensors are built simultaneously instead of single hyperplane described by rank-1 tensor in STM to separate input with different classes. To handle multiscale objects, multiple slices of different sizes are extracted to cover the object with an unknown class and expressed as multiscale tensors. Then, M-dimensional hyperplanes are established to project the input of multiscale tensors into class space. To ensure an efficient training of MCMS-STM, a decomposition algorithm is presented to break the complex dual problem of MCMS-STM into a series of analytic sub-optimizations. Using publicly available RSIs, the experimental results demonstrate that the MCMS-STM achieves 89.5% and 91.4% accuracy for classifying airplanes and ships with different classes and sizes, which outperforms typical SVM and STM methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Shoaib Akhtar ◽  
Tao Feng

Digital systems are changing to security systems in contemporary days. It is time for the digital system to have sufficient security to defend against threats and attacks. The intrusion detection system can identify an anomaly from an external or internal source in the network system. Many kinds of threats are present, that is, active and passive. These dangers could lead to anomalies in the system by which data can be attacked and taken by attackers from the beginning to the destination. Machine learning nowadays is a developing topic; its applications are wide. We can forecast the future through machine learning and classify the right class. In this paper, we employed the new binary and multiclass classification model of Convolutional Neural Networks (CNNs) to identify the anomaly of the network system. In this respect, we used the NSLKDD dataset. Our model uses a Convolutional Neural Network (CNN) to conduct binary and multiclass classification. In both datasets, we build a DL-based DoS detection model. We focus on the DoS category in the most extensively used IDS dataset, KDD. As the name implies, CNN is the most extensively used the DL model for image recognition. Adding a pooling layer to the convolution layer minimizes the size of the feature data extracted from the image while maintaining I/O and spatial information. The CNN model has shown the promising results of multiclass and binary classification in terms of validation loss of 0.0012 at 11th epochs and validation accuracy of 98% and 99%, respectively.


Author(s):  
Magdalena Michalska

The article provides an overview of selected applications of deep neural networks in the diagnosis of skin lesions from human dermatoscopic images, including many dermatological diseases, including very dangerous malignant melanoma. The lesion segmentation process, features selection and classification was described. Application examples of binary and multiclass classification are given. The described algorithms have been widely used in the diagnosis of skin lesions. The effectiveness, specificity, and accuracy of classifiers were compared and analysed based on available datasets.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Adriano M. Palmieri ◽  
Federico Bianchi ◽  
Matteo G. A. Paris ◽  
Claudia Benedetti

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahsan Bin Tufail ◽  
Yong-Kui Ma ◽  
Qiu-Na Zhang ◽  
Adil Khan ◽  
Lei Zhao ◽  
...  

Abstract Background Alzheimer’s disease (AD) is a neurodegenerative brain pathology formed due to piling up of amyloid proteins, development of plaques and disappearance of neurons. Another common subtype of dementia like AD, Parkinson’s disease (PD) is determined by the disappearance of dopaminergic neurons in the region known as substantia nigra pars compacta located in the midbrain. Both AD and PD target aged population worldwide forming a major chunk of healthcare costs. Hence, there is a need for methods that help in the early diagnosis of these diseases. PD subjects especially those who have confirmed postmortem plaque are a strong candidate for a second AD diagnosis. Modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) can be combined with deep learning methods to diagnose these two diseases for the benefit of clinicians. Result In this work, we deployed a 3D Convolutional Neural Network (CNN) to extract features for multiclass classification of both AD and PD in the frequency and spatial domains using PET and SPECT neuroimaging modalities to differentiate between AD, PD and Normal Control (NC) classes. Discrete Cosine Transform has been deployed as a frequency domain learning method along with random weak Gaussian blurring and random zooming in/out augmentation methods in both frequency and spatial domains. To select the hyperparameters of the 3D-CNN model, we deployed both 5- and 10-fold cross-validation (CV) approaches. The best performing model was found to be AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the spatial domain using fivefold CV approach while the worst performing model happens to be AD/NC(PET)/PD classification without augmentation in the frequency domain using tenfold CV approach. We also found that spatial domain methods tend to perform better than their frequency domain counterparts. Conclusion The proposed model provides a good performance in discriminating AD and PD subjects due to minimal correlation between these two dementia types on the clinicopathological continuum between AD and PD subjects from a neuroimaging perspective.


2021 ◽  
pp. 100295
Author(s):  
Javed Ali ◽  
M. Aldhaifallah ◽  
K.S. Nisar ◽  
A.A. Aljabr ◽  
M. Tanveer

Sign in / Sign up

Export Citation Format

Share Document