nonconvex problem
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2017 ◽  
Vol 29 (5) ◽  
pp. 1406-1438 ◽  
Author(s):  
Shuhei Fujiwara ◽  
Akiko Takeda ◽  
Takafumi Kanamori

Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.


2013 ◽  
Vol 23 (2) ◽  
pp. 263-276 ◽  
Author(s):  
Mikaël Barboteu ◽  
Krzysztof Bartosz ◽  
Piotr Kalita

We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach is based on the nonconvex proximal bundle method, whereas the second one deals with the approximation of a nonconvex problem by a sequence of nonsmooth convex programming problems. Some numerical experiments are realized to compare the two numerical approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Tian-Hui Ma ◽  
Ting-Zhu Huang ◽  
Xi-Le Zhao

We consider simultaneously estimating the restored image and the spatially dependent regularization parameter which mutually benefit from each other. Based on this idea, we refresh two well-known image denoising models: the LLT model proposed by Lysaker et al. (2003) and the hybrid model proposed by Li et al. (2007). The resulting models have the advantage of better preserving image regions containing textures and fine details while still sufficiently smoothing homogeneous features. To efficiently solve the proposed models, we consider an alternating minimization scheme to resolve the original nonconvex problem into two strictly convex ones. Preliminary convergence properties are also presented. Numerical experiments are reported to demonstrate the effectiveness of the proposed models and the efficiency of our numerical scheme.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Chun-Feng Wang ◽  
San-Yang Liu ◽  
Geng-Zhong Zheng

We consider a branch-and-reduce approach for solving generalized linear multiplicative programming. First, a new lower approximate linearization method is proposed; then, by using this linearization method, the initial nonconvex problem is reduced to a sequence of linear programming problems. Some techniques at improving the overall performance of this algorithm are presented. The proposed algorithm is proved to be convergent, and some experiments are provided to show the feasibility and efficiency of this algorithm.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Jinghao Zhu ◽  
Jiani Zhou

The analytic solution to an optimal control problem is investigated using the canonical dual method. By means of the Pontryagin principle and a transformation of the cost functional, the optimal control of a nonconvex problem is obtained. It turns out that the optimal control can be expressed by the costate via canonical dual variables. Some examples are illustrated.


Sign in / Sign up

Export Citation Format

Share Document