An adaptive real-time Web search engine

Author(s):  
Augustine Chidi Ikeji ◽  
Farshad Fotouhi
Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. KS169-KS182 ◽  
Author(s):  
Xiong Zhang ◽  
Jie Zhang

Similar to a web search engine, we have developed a microseismic search engine that can estimate an event location and the focal mechanism in less than a second to monitor the hydraulic fracturing process. The method was extended from a real-time earthquake monitoring approach for seismological applications. We first calculate the full waveforms of all possible microseismic events over a 3D grid with a known velocity model for a given acquisition geometry to create a database. We then index and rank all of the seismic waveforms in the database by following the characteristics of the phase and amplitude of the waveform through a computer fast search technology, specifically, the multiple randomized k-dimensional tree method. When a microseismic event occurs, the approximate best matches to the entry waveform are found immediately by comparing the characteristic features between the input data and the database. The method returns not just one but a series of solutions, similar to a web search engine. Thus, we can obtain a solution space that delineates the resolution and confidence level of the results. Also similar to a web search engine, the microseismic search engine does not require any input parameter or processing experience; thus, the solutions are the same for any user. Numerical tests suggest that the waveform search approach is insensitive to random and correlated noises. However, if the correlation values between the input data and best matches in the database are too low, suggesting unreliable results, the solution may be rejected automatically by applying a preset threshold. We have applied the method to real data, and found great potential for the routine real-time monitoring of microseismic events during hydraulic fracturing.


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 156
Author(s):  
Abdullah Bin Shams ◽  
Ehsanul Hoque Apu ◽  
Ashiqur Rahman ◽  
Md. Mohsin Sarker Raihan ◽  
Nazeeba Siddika ◽  
...  

Misinformation such as on coronavirus disease 2019 (COVID-19) drugs, vaccination or presentation of its treatment from untrusted sources have shown dramatic consequences on public health. Authorities have deployed several surveillance tools to detect and slow down the rapid misinformation spread online. Large quantities of unverified information are available online and at present there is no real-time tool available to alert a user about false information during online health inquiries over a web search engine. To bridge this gap, we propose a web search engine misinformation notifier extension (SEMiNExt). Natural language processing (NLP) and machine learning algorithm have been successfully integrated into the extension. This enables SEMiNExt to read the user query from the search bar, classify the veracity of the query and notify the authenticity of the query to the user, all in real-time to prevent the spread of misinformation. Our results show that SEMiNExt under artificial neural network (ANN) works best with an accuracy of 93%, F1-score of 92%, precision of 92% and a recall of 93% when 80% of the data is trained. Moreover, ANN is able to predict with a very high accuracy even for a small training data size. This is very important for an early detection of new misinformation from a small data sample available online that can significantly reduce the spread of misinformation and maximize public health safety. The SEMiNExt approach has introduced the possibility to improve online health management system by showing misinformation notifications in real-time, enabling safer web-based searching on health-related issues.


2007 ◽  
Vol 43 (3) ◽  
pp. 609-623 ◽  
Author(s):  
B. Barla Cambazoglu ◽  
Evren Karaca ◽  
Tayfun Kucukyilmaz ◽  
Ata Turk ◽  
Cevdet Aykanat

2008 ◽  
Vol 44 (1) ◽  
pp. 340-357 ◽  
Author(s):  
Dian Tjondronegoro ◽  
Amanda Spink

Sign in / Sign up

Export Citation Format

Share Document