focal mechanism
Recently Published Documents


TOTAL DOCUMENTS

554
(FIVE YEARS 131)

H-INDEX

35
(FIVE YEARS 4)

Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 65-83
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita de Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network, used to monitor natural and/or induced micro-seismicity, estimates focal mechanisms as a function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operating in the Campania–Lucania Apennines (southern Italy) aimed to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose is effective and can be adapted for other case studies with a double purpose. It can be a valid tool to design or to test the performance of local seismic networks, and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhiwei Zhang ◽  
Chuntao Liang ◽  
Feng Long ◽  
Min Zhao ◽  
Di Wang

The June 17, 2019, MS 6.0 Changning earthquake is the largest recorded event in the Sichuan basin, spatiotemporal variations of stress field may shed light on the seismogenic mechanism of the earthquake. We determined the focal mechanism solutions (FMSs) of 124 earthquakes with MS ≥ 3.0 occurring in the Changning area from April 1, 2007, to February 29, 2020, and analyzed changes of FMSs and stress field before and after Changning earthquake. The Changning aftershocks were predominantly thrust fault earthquakes, followed by strike slip. The P-axis azimuths of the aftershock FMSs were oriented predominantly in the NEE direction, notably differing from the NWW-oriented P-axis azimuths of pre-earthquake FMSs; it shows the rotation of local stress field before and after the Changning earthquake, it is speculated that the change of stress field in Changning area may be caused by long-term water injection and salt mining activities. From the southeast to the northwest of the aftershock zone, the azimuths of principal compressive stress (S1) change from NEE to near-EW in both horizontal and vertical planes. Significant changes occurred in the FMS types and stress field of the aftershock zone following the Changning earthquake, the FMSs became diverse, the S1 azimuth of the Changning area changed from NWW to NEE, and then EW, the plunge and stress tensor variances increased, it reflects that the stress field of the Changning area adjusts continually with time.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Masanao Shinohara ◽  
Shin’ichi Sakai ◽  
Tomomi Okada ◽  
Hiroshi Sato ◽  
Yusuke Yamashita ◽  
...  

AbstractAn earthquake with a magnitude of 6.7 occurred in the Japan Sea off Yamagata on June 18, 2019. The mainshock had a source mechanism of reverse-fault type with a compression axis of WNW–ESE direction. Since the source area is positioned in a marine area, seafloor seismic observation is indispensable for obtaining the precise distribution of the aftershocks. The source area has a water depth of less than 100 m, and fishing activity is high. It is difficult to perform aftershock observation using ordinary free-fall pop-up type ocean bottom seismometers (OBSs). We developed a simple anchored-buoy type OBS for shallow water depths and performed the seafloor observation using this. The seafloor seismic unit had three-component seismometers and a hydrophone. Two orthogonal tiltmeters and an azimuth meter monitored the attitude of the package. For seismic observation at shallow water depth, we concluded that an anchored-buoy system would have the advantage of avoiding accidents. Our anchored-buoy OBS was based on a system used in fisheries. We deployed three anchored-buoy OBSs in the source region where the water depth was approximately 80 m on July 5, 2019, and two of the OBSs were recovered on July 13, 2019. Temporary land seismic stations with a three-component seismometer were also installed. The arrival times of P- and S-waves were read from the records of the OBSs and land stations, and we located hypocenters with correction for travel time. A preliminary location was performed using absolute travel time and final hypocenters were obtained using the double-difference method. The aftershocks were distributed at a depth range of 2.5 km to 10 km and along a plane dipping to the southeast. The plane formed by the aftershocks is consistent with the focal mechanism of the mainshock. The activity region of the aftershocks was positioned in the upper part of the upper crust. Focal mechanisms were estimated using the polarity of the first arrivals. Although many aftershocks had a reverse-fault focal mechanism similar to the focal solution of the mainshock, normal-fault type and strike–slip fault type focal mechanisms were also estimated. Graphical Abstract


Author(s):  
Oskar Engdahl

AbstractPerceived self-efficacy is often held to be the most focal mechanism of human agency. It has shown strong potential to explain action in multiple areas highly relevant to understanding crime, at least when the concept is formulated in close connection with the conditions that characterize the criminal acts it is supposed to explain. This article introduces the concept in the context of white-collar crime. To advance our understanding of how opportunities for such crime work, self-efficacy is defined with regard to one’s ability to control others’ impression of financially relevant information, or what is called dramaturgical self-efficacy. The presentation of this concept and its various elements is illustrated with contemporary empirical cases of white-collar crime and is preceded by a discussion of how opportunity structures and perceived self-efficacy have been understood in previous research relevant to the field. The article also discusses how the concept can be further developed with regard to the relationship between motivation and opportunity for white-collar crime.


2021 ◽  
Vol 13 (24) ◽  
pp. 5142
Author(s):  
Yujiang Li ◽  
Yongsheng Li ◽  
Xingping Hu ◽  
Haoqing Liu

Different types of focal mechanism solutions for the 19 March 2021 Mw 5.7 Nakchu earthquake, Tibet, limit our understanding of this earthquake’s seismogenic mechanism and geodynamic process. In this study, the coseismic deformation field was determined and the geometric parameters of the seismogenic fault were inverted via Interferometric Synthetic Aperture Radar (InSAR) processing of Sentinel-1 data. The inversion results show that the focal mechanism solutions of the Nakchu earthquake are 237°/69°/−70° (strike/dip/rake), indicating that the seismogenic fault is a NEE-trending, NW-dipping fault dominated by the normal faulting with minor sinistral strike-slip components. The regional tectonic stress field derived from the in-situ stress measurements shows that the orientation of maximum principal compressive stress around the epicenter of the Nakchu earthquake is NNE, subparallel to the fault strike, which controlled the dominant normal faulting. The occurrence of seven M ≥ 7.0 historical earthquakes since the M 7.0 Shenza earthquake in 1934 caused a stress increase of 1.16 × 105 Pa at the hypocenter, which significantly advanced the occurrence of the Nakchu earthquake. Based on a comprehensive analysis of stress fields and focal mechanisms of the Nakchu earthquake, we propose that the dominated normal faulting occurs to accommodate the NE-trending compression of the Indian Plate to the Eurasian Plate and the strong historical earthquakes hastened the process. These results provide a theoretical basis for understanding the geometry and mechanics of the seismogenic fault that produced the Nakchu earthquake.


Author(s):  
F. Verkholantsev ◽  
I. Gabsatarova ◽  
N. Guseva ◽  
R. Dyagilev

Instrumental and macroseismic data on the earthquake of 18.10.2015 at 21h44m UTC, ML=4.7, I0=6 in the Sverdlovsk region, near the village of Sabik (Middle Urals) are presented. A significant amount of macroseismic data made it possible to build a map of the macroseismic field, taking into account the anisotropic nature of the propagation of the seismic effect. Taking into account the decision of the focal mechanism, the tectonic position of the source was substantiated.


Author(s):  
A. Frolova ◽  
V. Grebennikova ◽  
N. Bagmanova ◽  
A. Berezina ◽  
E. Pershina ◽  
...  

Information on the earthquake with KR=14.1, which occurred in Kyrgyzstan on November 17, 2015, is presented. Its epicenter is related to the South Fergana zone of the Osh region, in which felt earthquakes with intensity up to I=8–9 occurred repeatedly. This event was named Taldyk according to the settlement nearest to the epicenter. The earthquake was accompanied by numerous aftershocks: for the first day, 189 events were registered, for the second – 196, for the third – 84. Most part of the aftershocks is localized within the depth interval of 12–13 km, which is practically equal to the depth of the main shock (h=13 km). The focal mechanism of the main shock has a reverse type with strike-slip components. No serious investigation of the consequences of this earthquake carried out. Some macroseismic data are received from field reports of the station operators. For a more complete analysis of the possible impact of this earthquake and, first of all, for the needs of the Ministry of Emergency Situations of Kyrgyzstan Republic, a map of theoretical isoseismals was created.


Author(s):  
N. Stepanenco ◽  
V. Cardanets ◽  
N. Simonova

All earthquakes felt in 2015 on the territory of Moldova occurred outside its borders, in the Vrancea and Pre-Carpathian regions (Romania). In 2015, the population of Moldova felt 4 earthquakes: on January 19 and 24, on March 16 and 29. The article discusses in detail the three most powerful of them – January 24, March 16, and 29 with epicenters in the Vrancea mountain range. The January 24 earthquake with Mw=4.3 and hрР=89 km was felt in Romania and the Republic of Moldova, where it was observed with the intensity I=3 in Cahul and I=2 in Chisinau. The March 16 earthquake with Mw=4.3 and hрР=121 km was felt in the eastern and southern counties of Romania (8 settlements). It was observed on the territory of the Republic of Moldova with the intensity I=3 in Cahul and I=2–3 in Chisinau. The intensity in the epicenter did not exceed I=4. The March 29 earthquake with Mw=4.5 and hрР=144 km was felt in the eastern and southern counties of Romania (8 settlements). It was observed on the territory of the Republic of Moldova with intensity I=3–4 in Cahul and I=2–3 in Chisinau. Solutions of the focal mechanism based on data from various agencies are presented. All three earthquakes occurred under the influence of the prevailing near-horizontal compression stress. The study is carried out within the framework of the State program, Geoseism project, registration number 36/21.10.19А.


2021 ◽  
Vol 18 (6) ◽  
pp. 1007-1021
Author(s):  
Chengwei Yang ◽  
Chenghu Wang ◽  
Mingruo Jiao ◽  
Yujiang Li ◽  
Pu Wang

Abstract Regional tectonic stress fields are key crustal stress elements that drive tectonic movements and are associated with regional tectonics and geological resources. Regional tectonic stress field evolution of the Jinzhou area, located in the eastern block of the North China Craton (NCC), may provide a deeper understanding of tectonics of western Liaoning and the NCC. This work conducted borehole television, hydraulic fracturing and focal mechanism solutions to invert the paleo and present regional tectonic stress fields. Four groups of tensile fracture in the southern Jinzhou area were identified via borehole television, and their azimuths were NNW–SSE, NWW–SEE, nearly W–E and NE–SW in temporal order representing four stages of extensional tectonic events. Hydraulic fracturing and focal mechanism solutions showed that the stress status was normal fault and strike-slip, revealing that the southern Jinzhou area is undergoing NEE–SWW-oriented compression and nearly N–S-oriented extension in accordance with the strike-slip mechanism. From the Early Cretaceous to the present, the direction of the regional extensional stress in the southern Jinzhou area has evolved counterclockwise and sequentially from NNW–SSE to NWW–SEE, W–E, NE–SW and nearly N–S, and the regional tectonic mechanism has transited from extension to extension-strike-slip to strike-slip, leading to the current tectonic framework.


2021 ◽  
Author(s):  
◽  
David Walsh

<p>A focal mechanism is a geometrical representation of fault slip during an earthquake. Reliable earthquake focal mechanism solutions are used to assess the tectonic characteristics of a region, and are required as inputs to the problem of estimating tectonic stress. We develop a new probabilistic (Bayesian) method for estimating the distribution of focal mechanism parameters based on seismic wave polarity data. Our approach has the advantage of enabling us to incorporate observational errors, particularly those arising from imperfectly known earthquake locations, allowing exploration of the entire parameter space, and leads to natural point estimates of focal mechanism parameters. We investigate the use of generalised Matrix Fisher distributions for parameterising focal mechanism uncertainties by minimising the Kullback-Leibler divergence. We present here the results of our method in two situations. We first consider the case in which the seismic velocity of the region of interest (described by a velocity model) is presumed to be precisely known, with application to seismic data from the Raukumara Peninsula, New Zealand. We then consider the case in which the velocity model is imperfectly known, with application to data from the Kawerau region, New Zealand. We find that our estimated focal mechanism solutions for the most part are consistent with all available polarity data, and correspond closely to solutions obtained using established methods. Further, the generalised Matrix Fisher distributions we examine provide a good fit to our Bayesian posterior PDF of the focal mechanism parameters, enabling the posterior PDF to be succinctly summarised by reporting the estimated parameters of the fitted distribution.</p>


Sign in / Sign up

Export Citation Format

Share Document