scholarly journals Test case prioritization for acceptance testing of cyber physical systems: a multi-objective search-based approach

Author(s):  
Seung Yeob Shin ◽  
Shiva Nejati ◽  
Mehrdad Sabetzadeh ◽  
Lionel C. Briand ◽  
Frank Zimmer
2019 ◽  
Vol 153 ◽  
pp. 86-104 ◽  
Author(s):  
Dipesh Pradhan ◽  
Shuai Wang ◽  
Shaukat Ali ◽  
Tao Yue ◽  
Marius Liaaen

2021 ◽  
Vol 5 (4) ◽  
pp. 1-24
Author(s):  
Jianguo Chen ◽  
Kenli Li ◽  
Keqin Li ◽  
Philip S. Yu ◽  
Zeng Zeng

As a new generation of Public Bicycle-sharing Systems (PBS), the Dockless PBS (DL-PBS) is an important application of cyber-physical systems and intelligent transportation. How to use artificial intelligence to provide efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for DL-PBS. In this article, we propose MORL-BD, a dynamic bicycle dispatching algorithm based on multi-objective reinforcement learning to provide the optimal bicycle dispatching solution for DL-PBS. We model the DL-PBS system from the perspective of cyber-physical systems and use deep learning to predict the layout of bicycle parking spots and the dynamic demand of bicycle dispatching. We define the multi-route bicycle dispatching problem as a multi-objective optimization problem by considering the optimization objectives of dispatching costs, dispatch truck's initial load, workload balance among the trucks, and the dynamic balance of bicycle supply and demand. On this basis, the collaborative multi-route bicycle dispatching problem among multiple dispatch trucks is modeled as a multi-agent and multi-objective reinforcement learning model. All dispatch paths between parking spots are defined as state spaces, and the reciprocal of dispatching costs is defined as a reward. Each dispatch truck is equipped with an agent to learn the optimal dispatch path in the dynamic DL-PBS network. We create an elite list to store the Pareto optimal solutions of bicycle dispatch paths found in each action, and finally get the Pareto frontier. Experimental results on the actual DL-PBS show that compared with existing methods, MORL-BD can find a higher quality Pareto frontier with less execution time.


2021 ◽  
Vol 9 (4) ◽  
pp. 0-0

This paper proposes a novel test case prioritization technique, namely Multi- Objective Crow Search and Fruitfly Optimization (MOCSFO) for test case prioritization. The proposed MOCSFO is designed by integrating Crow search algorithm (CSA) and Chaotic Fruitfly optimization algorithm (CFOA). The optimal test cases are selected based on newly modelled fitness function, which consist of two parameters, namely average percentage of combinatorial coverage (APCC) and Normalized average of the percentage of faults detected (NAPFD). The test case to be selected is decided using a searching criterion or fitness based on sequential weighed coverage size. Accordingly, the effective searching criterion is formulated to determine the optimal test cases based on the constraints. The experimentation of the proposed MOCSFO method is performed by considering the performance metrics, like NAPFD, and APCC. The proposed MOCSFO outperformed the existing methods with enhanced NAPFD of 0.7, and APCC of 0.837.


Author(s):  
Morten Mossige ◽  
Arnaud Gotlieb ◽  
Helge Spieker ◽  
Hein Meling ◽  
Mats Carlsson

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1736
Author(s):  
Davide Piumatti ◽  
Jacopo Sini ◽  
Stefano Borlo ◽  
Matteo Sonza Reorda ◽  
Radu Bojoi ◽  
...  

Complex systems are composed of numerous interconnected subsystems, each designed to perform specific functions. The different subsystems use many technological items that work together, as for the case of cyber-physical systems. Typically, a cyber-physical system is composed of different mechanical actuators driven by electrical power devices and monitored by sensors. Several approaches are available for designing and validating complex systems, and among them, behavioral-level modeling is becoming one of the most popular. When such cyber-physical systems are employed in mission- or safety-critical applications, it is mandatory to understand the impacts of faults on them and how failures in subsystems can propagate through the overall system. In this paper, we propose a methodology for supporting the failure mode, effects, and criticality analysis (FMECA) aimed at identifying the critical faults and assessing their effects on the overall system. The end goal is to analyze how a fault affecting a single subsystem possibly propagates through the whole cyber-physical system, considering also the embedded software and the mechanical elements. In particular, our approach allows the analysis of the propagation through the whole system (working at high level) of a fault injected at low level. This paper provides a solution to automate the FMECA process (until now mainly performed manually) for complex cyber-physical systems. It improves the failure classification effectiveness: considering our test case, it reduced the number of critical faults from 10 to 6. The remaining four faults are mitigated by the cyber-physical system architecture. The proposed approach has been tested on a real cyber-physical system in charge of driving a three-phase motor for industrial compressors, showing its feasibility and effectiveness.


Author(s):  
Aitor Arrieta ◽  
Shuai Wang ◽  
Urtzi Markiegi ◽  
Goiuria Sagardui ◽  
Leire Etxeberria

Sign in / Sign up

Export Citation Format

Share Document