An Efficient Cryptography-Based Access Control Using Inner-Product Proxy Re-Encryption Scheme

Author(s):  
Masoomeh Sepehri ◽  
Alberto Trombetta ◽  
Maryam Sepehri ◽  
Ernesto Damiani
Author(s):  
Masoomeh Sepehri ◽  
Alberto Trombetta ◽  
Maryam Sepehri

With the ever-growing production of data coming from multiple, scattered, highly dynamical sources (like those found in IoT scenarios), many providers are motivated to upload their data to the cloud servers and share them with other persons with different purposes. However, storing data on cloud imposes serious concerns in terms of data confidentiality and access control. These concerns get more attention when data is required to be shared among multiple users with different access policies. In order to update access policy without making re-encryption, we propose an efficient inner-product proxy re-encryption scheme that provides a proxy server with a transformation key with which a delegator’s ciphertext associated with an attribute vector can be transformed to a new ciphertext associated with delegatee’s attribute vector set. Our proposed policy updating scheme enables the delegatee to decrypt the shared data with its own key without requesting a new decryption key. We experimentally analyze the efficiency of our scheme and show that our scheme is adaptive attribute-secure against chosen-plaintext under standard Decisional Linear (D-Linear) assumption.  


Author(s):  
Luan Ibraimi ◽  
Qiang Tang ◽  
Pieter Hartel ◽  
Willem Jonker

Commercial Web-based Personal-Health Record (PHR) systems can help patients to share their personal health records (PHRs) anytime from anywhere. PHRs are very sensitive data and an inappropriate disclosure may cause serious problems to an individual. Therefore commercial Web-based PHR systems have to ensure that the patient health data is secured using state-of-the-art mechanisms. In current commercial PHR systems, even though patients have the power to define the access control policy on who can access their data, patients have to trust entirely the access-control manager of the commercial PHR system to properly enforce these policies. Therefore patients hesitate to upload their health data to these systems as the data is processed unencrypted on untrusted platforms. Recent proposals on enforcing access control policies exploit the use of encryption techniques to enforce access control policies. In such systems, information is stored in an encrypted form by the third party and there is no need for an access control manager. This implies that data remains confidential even if the database maintained by the third party is compromised. In this paper we propose a new encryption technique called a type-and-identity-based proxy re-encryption scheme which is suitable to be used in the healthcare setting. The proposed scheme allows users (patients) to securely store their PHRs on commercial Web-based PHRs, and securely share their PHRs with other users (doctors).


2019 ◽  
Vol 62 (12) ◽  
pp. 1748-1760 ◽  
Author(s):  
Yang Chen ◽  
Wenmin Li ◽  
Fei Gao ◽  
Wei Yin ◽  
Kaitai Liang ◽  
...  

AbstractOnline data sharing has become a research hotspot while cloud computing is getting more and more popular. As a promising encryption technique to guarantee the security shared data and to realize flexible fine-grained access control, ciphertext-policy attribute-based encryption (CP-ABE) has drawn wide attentions. However, there is a drawback preventing CP-ABE from being applied to cloud applications. In CP-ABE, the access structure is included in the ciphertext, and it may disclose user’s privacy. In this paper, we find a more efficient method to connect ABE with inner product encryption and adopt several techniques to ensure the expressiveness of access structure, the efficiency and security of our scheme. We are the first to present a secure, efficient fine-grained access control scheme with hidden access structure, the access structure can be expressed as AND-gates on multi-valued attributes with wildcard. We conceal the entire attribute instead of only its values in the access structure. Besides, our scheme has obvious advantages in efficiency compared with related schemes. Our scheme can make data sharing secure and efficient, which can be verified from the analysis of security and performance.


Author(s):  
Mamta ­ ◽  
Brij B. Gupta

Attribute based encryption (ABE) is a widely used technique with tremendous application in cloud computing because it provides fine-grained access control capability. Owing to this property, it is emerging as a popular technique in the area of searchable encryption where the fine-grained access control is used to determine the search capabilities of a user. But, in the searchable encryption schemes developed using ABE it is assumed that the access structure is monotonic which contains AND, OR and threshold gates. Many ABE schemes have been developed for non-monotonic access structure which supports NOT gate, but this is the first attempt to develop a searchable encryption scheme for the same. The proposed scheme results in fast search and generates secret key and search token of constant size and also the ciphertext components are quite fewer than the number of attributes involved. The proposed scheme is proven secure against chosen keyword attack (CKA) in selective security model under Decisional Bilinear Diffie-Hellman (DBDH) assumption.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qiuyu Zhang ◽  
Zhenyu Zhao ◽  
Minrui Fu

In order to ensure the confidentiality and secure sharing of speech data, and to solve the problems of slow deployment of attribute encryption systems and fine-grained access control in cloud storage, a speech encryption scheme based on ciphertext policy hierarchical attributes was proposed. First, perform hierarchical processing of the attributes of the speech data to reflect the hierarchical structure and integrate the hierarchical access structure into a single-access structure. Second, use the attribute fast encryption framework to construct the attribute encryption scheme of the speech data, and use the integrated access to the speech data; thus, the structure is encrypted and uploaded to the cloud for storage and sharing. Finally, use the hardness of decisional bilinear Diffie–Hellman (DBDH) assumption to prove that the proposed scheme is secure in the random oracle model. The theoretical security analysis and experimental results show that the proposed scheme can achieve efficient and fine-grained access control and is secure and extensible.


2021 ◽  
Author(s):  
Baris Celiktas ◽  
Enver Ozdemır ◽  
Sueda Guzey

<div>An inner product space-based hierarchical access control scheme is presented in this work. The proposed scheme can be utilized in any cloud delivery model where the data owner implements a hierarchical access control policy. In other words, the scheme adjusts any hierarchical access control policy to a digital medium. The scheme is based on inner product spaces and the method of orthogonal projection. While distributing a basis for each class by the data owner, left-to-right and bottom-up (LRBU) policy can ensure much more flexibility and efficiency, especially during any change in the structure. For each class, the secret keys can be derived only when a predetermined subspace is available. Our scheme is resistant to collusion attacks and privilege creep problems, as well as providing key recovery and key indistinguishability security. The performance analysis also shows us that the data storage overhead is much more tolerable than other schemes in the literature. In addition, the other advantage of our key access scheme over many others in the literature is that it requires only one operation to derive the secret key of child classes securely and efficiently.</div>


Sign in / Sign up

Export Citation Format

Share Document