Integrating Biological Heuristics and Gene Expression Data for Gene Regulatory Network Inference

Author(s):  
Armita Zarnegar ◽  
Herbert F. Jelinek ◽  
Peter Vamplew ◽  
Andrew Stranieri
2020 ◽  
pp. 1052-1075 ◽  
Author(s):  
Dina Elsayad ◽  
A. Ali ◽  
Howida A. Shedeed ◽  
Mohamed F. Tolba

The gene expression analysis is an important research area of Bioinformatics. The gene expression data analysis aims to understand the genes interacting phenomena, gene functionality and the genes mutations effect. The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network aims to study the genes interactions topological organization. The regulatory network is critical for understanding the pathological phenotypes and the normal cell physiology. There are many researches that focus on gene regulatory network analysis but unfortunately some algorithms are affected by data size. Where, the algorithm runtime is proportional to the data size, therefore, some parallel algorithms are presented to enhance the algorithms runtime and efficiency. This work presents a background, mathematical models and comparisons about gene regulatory networks analysis different techniques. In addition, this work proposes Parallel Architecture for Gene Regulatory Network (PAGeneRN).


2019 ◽  
Author(s):  
Zhang Zhang ◽  
Lifei Wang ◽  
Shuo Wang ◽  
Ruyi Tao ◽  
Jingshu Xiao ◽  
...  

SummaryReconstructing gene regulatory networks (GRNs) and inferring the gene dynamics are important to understand the behavior and the fate of the normal and abnormal cells. Gene regulatory networks could be reconstructed by experimental methods or from gene expression data. Recent advances in Single Cell RNA sequencing technology and the computational method to reconstruct trajectory have generated huge scRNA-seq data tagged with additional time labels. Here, we present a deep learning model “Neural Gene Network Constructor” (NGNC), for inferring gene regulatory network and reconstructing the gene dynamics simultaneously from time series gene expression data. NGNC is a model-free heterogenous model, which can reconstruct any network structure and non-linear dynamics. It consists of two parts: a network generator which incorporating gumbel softmax technique to generate candidate network structure, and a dynamics learner which adopting multiple feedforward neural networks to predict the dynamics. We compare our model with other well-known frameworks on the data set generated by GeneNetWeaver, and achieve the state of the arts results both on network reconstruction and dynamics learning.


Author(s):  
Bing Liu ◽  
Ina Hoeschele ◽  
Alberto de la Fuente

In this chapter, we review the current state of Gene Regulatory Network inference based on ‘Genetical Genomics’ experiments (Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Jansen, 2003; Jansen & Nap, 2001; Schadt et al., 2003) as a special case of causal network inference in ‘Systems Genetics’ (Threadgill, 2006). In a Genetical Genomics experiment, a segregating or genetically randomized population is DNA marker genotyped and gene-expression profiled on a genomewide scale. The genotypes are regarded as natural, multifactorial perturbations resulting in different gene-expression ‘phenotypes’, and causal relationships can therefore be established between the measured genotypes and the gene-expression phenotypes. In this chapter, we review different computational approaches to Gene Regulatory Network inference based on the joint analysis of DNA marker and expression data and additionally of DNA sequence information if available. This includes different methods for expression QTL mapping, selection of regulator-target pairs, construction of an encompassing network, which strongly constrains the network search space, and pairwise and multivariate methods for Gene Regulatory Network inference, such as Bayesian Networks and Structural Equation Modeling.


2022 ◽  
Author(s):  
Kay Spiess ◽  
Timothy Fulton ◽  
Seogwon Hwang ◽  
Kane Toh ◽  
Dillan Saunders ◽  
...  

The study of pattern formation has benefited from reverse-engineering gene regulatory network (GRN) structure from spatio-temporal quantitative gene expression data. Traditional approaches omit tissue morphogenesis, hence focusing on systems where the timescales of pattern formation and morphogenesis can be separated. In such systems, pattern forms as an emergent property of the underlying GRN. This is not the case in many animal patterning systems, where patterning and morphogenesis are simultaneous. To address pattern formation in these systems we need to adapt our methodologies to explicitly accommodate cell movements and tissue shape changes. In this work we present a novel framework to reverse-engineer GRNs underlying pattern formation in tissues experiencing morphogenetic changes and cell rearrangements. By combination of quantitative data from live and fixed embryos we approximate gene expression trajectories (AGETs) in single cells and use a subset to reverse-engineer candidate GRNs using a Markov Chain Monte Carlo approach. GRN fit is assessed by simulating on cell tracks (live-modelling) and comparing the output to quantitative data-sets. This framework outputs candidate GRNs that recapitulate pattern formation at the level of the tissue and the single cell. To our knowledge, this inference methodology is the first to integrate cell movements and gene expression data, making it possible to reverse-engineer GRNs patterning tissues undergoing morphogenetic changes.


2017 ◽  
Vol 13 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Le Ou-Yang ◽  
Hong Yan ◽  
Xiao-Fei Zhang

Exploring how the structure of a gene regulatory network differs between two different disease states is fundamental for understanding the biological mechanisms behind disease development and progression.


Sign in / Sign up

Export Citation Format

Share Document