Quality-based Score Level Fusion for Continuous Authentication with Motion Sensor and Face

Author(s):  
Shixuan Wang ◽  
Jiabin Yuan ◽  
Shudi Chen
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yanping Zhang ◽  
Jing Peng ◽  
Xiaohui Yuan ◽  
Lisi Zhang ◽  
Dongzi Zhu ◽  
...  

AbstractRecognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (Multi-feature Combined Cultivar Identification System), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online.


Author(s):  
Milind E Rane ◽  
Umesh S Bhadade

The paper proposes a t-norm-based matching score fusion approach for a multimodal heterogenous biometric recognition system. Two trait-based multimodal recognition system is developed by using biometrics traits like palmprint and face. First, palmprint and face are pre-processed, extracted features and calculated matching score of each trait using correlation coefficient and combine matching scores using t-norm based score level fusion. Face database like Face 94, Face 95, Face 96, FERET, FRGC and palmprint database like IITD are operated for training and testing of algorithm. The results of experimentation show that the proposed algorithm provides the Genuine Acceptance Rate (GAR) of 99.7% at False Acceptance Rate (FAR) of 0.1% and GAR of 99.2% at FAR of 0.01% significantly improves the accuracy of a biometric recognition system. The proposed algorithm provides the 0.53% more accuracy at FAR of 0.1% and 2.77% more accuracy at FAR of 0.01%, when compared to existing works.


Author(s):  
Saliha Artabaz ◽  
Layth Sliman ◽  
Hachemi Nabil Dellys ◽  
Karima Benatchba ◽  
Mouloud Koudil

2018 ◽  
Vol 29 (1) ◽  
pp. 565-582
Author(s):  
T.R. Jayanthi Kumari ◽  
H.S. Jayanna

Abstract In many biometric applications, limited data speaker verification plays a significant role in practical-oriented systems to verify the speaker. The performance of the speaker verification system needs to be improved by applying suitable techniques to limited data condition. The limited data represent both train and test data duration in terms of few seconds. This article shows the importance of the speaker verification system under limited data condition using feature- and score-level fusion techniques. The baseline speaker verification system uses vocal tract features like mel-frequency cepstral coefficients, linear predictive cepstral coefficients and excitation source features like linear prediction residual and linear prediction residual phase as features along with i-vector modeling techniques using the NIST 2003 data set. In feature-level fusion, the vocal tract features are fused with excitation source features. As a result, on average, equal error rate (EER) is approximately equal to 4% compared to individual feature performance. Further in this work, two different types of score-level fusion are demonstrated. In the first case, fusing the scores of vocal tract features and excitation source features at score-level-maintaining modeling technique remains the same, which provides an average reduction approximately equal to 2% EER compared to feature-level fusion performance. In the second case, scores of the different modeling techniques are combined, which has resulted in EER reduction approximately equal to 4.5% compared with score-level fusion of different features.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 183391-183400
Author(s):  
Yongliang Zhang ◽  
Chenhao Gao ◽  
Shengyi Pan ◽  
Zhiwei Li ◽  
Yuanyang Xu ◽  
...  

2021 ◽  
Author(s):  
Zhibing Xie

Understanding human emotional states is indispensable for our daily interaction, and we can enjoy more natural and friendly human computer interaction (HCI) experience by fully utilizing human’s affective states. In the application of emotion recognition, multimodal information fusion is widely used to discover the relationships of multiple information sources and make joint use of a number of channels, such as speech, facial expression, gesture and physiological processes. This thesis proposes a new framework of emotion recognition using information fusion based on the estimation of information entropy. The novel techniques of information theoretic learning are applied to feature level fusion and score level fusion. The most critical issues for feature level fusion are feature transformation and dimensionality reduction. The existing methods depend on the second order statistics, which is only optimal for Gaussian-like distributions. By incorporating information theoretic tools, a new feature level fusion method based on kernel entropy component analysis is proposed. For score level fusion, most previous methods focus on predefined rule based approaches, which are usually heuristic. In this thesis, a connection between information fusion and maximum correntropy criterion is established for effective score level fusion. Feature level fusion and score level fusion methods are then combined to introduce a two-stage fusion platform. The proposed methods are applied to audiovisual emotion recognition, and their effectiveness is evaluated by experiments on two publicly available audiovisual emotion databases. The experimental results demonstrate that the proposed algorithms achieve improved performance in comparison with the existing methods. The work of this thesis offers a promising direction to design more advanced emotion recognition systems based on multimodal information fusion and has great significance to the development of intelligent human computer interaction systems.


Sign in / Sign up

Export Citation Format

Share Document