motion sensor
Recently Published Documents


TOTAL DOCUMENTS

705
(FIVE YEARS 236)

H-INDEX

31
(FIVE YEARS 5)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 106
Author(s):  
Gamin Kim

Light Detection and Ranging (LiDAR) is a sensor that uses a laser to represent the surrounding environment in three-dimensional information. Thanks to the development of LiDAR, LiDAR-based applications are being actively used in autonomous vehicles. In order to effectively use the information coming from LiDAR, extrinsic calibration which finds the translation and the rotation relationship between LiDAR coordinate and vehicle coordinate is essential. Therefore, many studies on LiDAR extrinsic calibration are steadily in progress. The performance index (PI) of the calibration parameter is a value that quantitatively indicates whether the obtained calibration parameter is similar to the true value or not. In order to effectively use the obtained calibration parameter, it is important to validate the parameter through PI. Therefore, in this paper, we propose an algorithm to obtain the performance index for the calibration parameter between LiDAR and the motion sensor. This performance index is experimentally verified in various environments by Monte Carlo simulation and validated using CarMaker simulation data and real data. As a result of verification, the PI of the calibration parameter obtained through the proposed algorithm has the smallest value when the calibration parameter has a true value, and increases as an error is added to the true value. In other words, it has been proven that PI is convex to the calibration parameter. In addition, it is able to confirm that the PI obtained using the proposed algorithm provides information on the effect of the calibration parameters on mapping and localization.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8078
Author(s):  
Petter Stefansson ◽  
Fredrik Karlsson ◽  
Magnus Persson ◽  
Carl Magnus Olsson

Quantifying the number of occupants in an indoor space is useful for a wide variety of applications. Attempts have been made at solving the task using passive infrared (PIR) motion sensor data together with supervised learning methods. Collecting a large labeled dataset containing both PIR motion sensor data and ground truth people count is however time-consuming, often requiring one hour of observation for each hour of data gathered. In this paper, a method is proposed for generating such data synthetically. A simulator is developed in the Unity game engine capable of producing synthetic PIR motion sensor data by detecting simulated occupants. The accuracy of the simulator is tested by replicating a real-world meeting room inside the simulator and conducting an experiment where a set of choreographed movements are performed in the simulated environment as well as the real room. In 34 out of 50 tested situations, the output from the simulated PIR sensors is comparable to the output from the real-world PIR sensors. The developed simulator is also used to study how a PIR sensor’s output changes depending on where in a room a motion is carried out. Through this, the relationship between sensor output and spatial position of a motion is discovered to be highly non-linear, which highlights some of the difficulties associated with mapping PIR data to occupancy count.


2021 ◽  
Author(s):  
Chenhui Huang ◽  
Kenichiro Fukushi ◽  
Zhenwei Wang ◽  
Fumiyuki Nihey ◽  
Hiroshi Kajitani ◽  
...  
Keyword(s):  

Author(s):  
Huahuang Luo ◽  
Mingzheng Duan ◽  
Hadi Tavakkoli ◽  
Jose Cabot ◽  
Yi-Kuen Lee

2021 ◽  
Author(s):  
Pierre Rouge ◽  
Ali Moukadem ◽  
Alain Dieterlen ◽  
Antoine Boutet ◽  
Carole Frindel

Sign in / Sign up

Export Citation Format

Share Document