biometric system
Recently Published Documents


TOTAL DOCUMENTS

803
(FIVE YEARS 280)

H-INDEX

23
(FIVE YEARS 6)

Author(s):  
Amitabh Thapliyal ◽  
Om Prakash Verma ◽  
Amioy Kumar

<p><span>The usage of mobile phones has increased multifold in the recent decades mostly because of its utility in most of the aspects of daily life, such as communications, entertainment, and financial transactions. Feature phones are generally the keyboard based or lower version of touch based mobile phones, mostly targeted for efficient calling and messaging. In comparison to smart phones, feature phones have no provision of a biometrics system for the user access. The literature, have shown very less attempts in designing a biometrics system which could be most suitable to the low-cost feature phones. A biometric system utilizes the features and attributes based on the physiological or behavioral properties of the individual. In this research, we explore the usefulness of keystroke dynamics for feature phones which offers an efficient and versatile biometric framework. In our research, we have suggested an approach to incorporate the user’s typing patterns to enhance the security in the feature phone. We have applied k-nearest neighbors (k-NN) with fuzzy logic and achieved the equal error rate (EER) 1.88% to get the better accuracy. The experiments are performed with 25 users on Samsung On7 Pro C3590. On comparison, our proposed technique is competitive with almost all the other techniques available in the literature.</span></p>


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 591
Author(s):  
Yue Sun ◽  
Lu Leng ◽  
Zhe Jin ◽  
Byung-Gyu Kim

Biometric signals can be acquired with different sensors and recognized in secure identity management systems. However, it is vulnerable to various attacks that compromise the security management in many applications, such as industrial IoT. In a real-world scenario, the target template stored in the database of a biometric system can possibly be leaked, and then used to reconstruct a fake image to fool the biometric system. As such, many reconstruction attacks have been proposed, yet unsatisfactory naturalness, poor visual quality or incompleteness remains as major limitations. Thus, two reinforced palmprint reconstruction attacks are proposed. Any palmprint image, which can be easily obtained, is used as the initial image, and the region of interest is iteratively modified with deep reinforcement strategies to reduce the matching distance. In the first attack, Modification Constraint within Neighborhood (MCwN) limits the modification extent and suppresses the reckless modification. In the second attack, Batch Member Selection (BMS) selects the significant pixels (SPs) to compose the batch, which are simultaneously modified to a slighter extent to reduce the matching number and the visual-quality degradation. The two reinforced attacks can satisfy all the requirements, which cannot be simultaneously satisfied by the existing attacks. The thorough experiments demonstrate that the two attacks have a highly successful attack rate for palmprint systems based on the most state-of-the-art coding-based methods.


Author(s):  
Rahul Gupta ◽  
Naman Gupta ◽  
Tushar Gupta ◽  
Aditya Srivastava ◽  
Ritu Gupta ◽  
...  

Author(s):  
M. S. Lohith ◽  
Yoga Suhas Kuruba Manjunath ◽  
M. N. Eshwarappa

Biometrics is an active area of research because of the increase in need for accurate person identification in numerous applications ranging from entertainment to security. Unimodal and multimodal are the well-known biometric methods. Unimodal biometrics uses one biometric modality of a person for person identification. The performance of an unimodal biometric system is degraded due to certain limitations such as: intra-class variations and nonuniversality. The person identification using more than one biometric modality of a person is multimodal biometrics. This method of identification has gained more interest due to resistance on spoof attacks and more recognition rate. Conventional methods of feature extraction have difficulty in engineering features that are liable to more variations such as illumination, pose and age variations. Feature extraction using convolution neural network (CNN) can overcome these difficulties because large dataset with robust variations can be used for training, where CNN can learn these variations. In this paper, we propose multimodal biometrics at feature level horizontal fusion using face, ear and periocular region biometric modalities and apply deep learning CNN for feature representation and also we propose face, ear and periocular region dataset that are robust to intra-class variations. The evaluation of the system is made by using proposed database. Accuracy, Precision, Recall and [Formula: see text] score are calculated to evaluate the performance of the system and had shown remarkable improvement over existing biometric system.


Author(s):  
Mrunal Pathak

Abstract: Smartphones have become a crucial way of storing sensitive information; therefore, the user's privacy needs to be highly secured. This can be accomplished by employing the most reliable and accurate biometric identification system available currently which is, Eye recognition. However, the unimodal eye biometric system is not able to qualify the level of acceptability, speed, and reliability needed. There are other limitations such as constrained authentication in real time applications due to noise in sensed data, spoof attacks, data quality, lack of distinctiveness, restricted amount of freedom, lack of universality and other factors. Therefore, multimodal biometric systems have come into existence in order to increase security as well as to achieve better performance.[1] This paper provides an overview of different multimodal biometric (multibiometric) systems for smartphones being employed till now and also proposes a multimodal biometric system which can possibly overcome the limitations of the current biometric systems. Keywords: Biometrics, Unimodal, Multimodal, Fusion, Multibiometric Systems


2021 ◽  
pp. 44-46
Author(s):  
Linda Christabel. S ◽  
Merrylda Claribel. S ◽  
Sushmitha. M ◽  
Mohammed Haroon. A. L ◽  
Karpagam. S ◽  
...  

In this modern era equipped with technologies, the crime rates are increasing exponentially. This requires newer methodologies to identify a person who is a victim as well as the perpetruator. Automated biometric systems helps in identifying the individuals by the stored information in the database which are unique for each individual. Some of the important methods are ngerprint biometrics and iris scanning.As these methods involves soft tissues they cant be relied upon during mass disasters like burn accidents and gas leakage accidents. Hence, a biometric system using the hard tissue is required for better identication of the individuals. Thus, Ameloglyphics is introduced to aid in identication of individuals died during mass disasters and it plays a vital role in forensic odontology. This review highlights this technology in detail.


2021 ◽  
Vol 5 ◽  
pp. 179
Author(s):  
Alinani Simukanga ◽  
Misaki Kobayashi ◽  
Lauren Etter ◽  
Wenda Qin ◽  
Rachel Pieciak ◽  
...  

Background Accurate patient identification is essential for delivering longitudinal care. Our team developed an ear biometric system (SEARCH) to improve patient identification. To address how ear growth affects matching rates longitudinally, we constructed an infant cohort, obtaining ear image sets monthly to map a 9-month span of observations. This analysis had three main objectives: 1) map trajectory of ear growth during the first 9 months of life; 2) determine the impact of ear growth on matching accuracy; and 3) explore computer vision techniques to counter a loss of accuracy.   Methodology Infants were enrolled from an urban clinic in Lusaka, Zambia. Roughly half were enrolled at their first vaccination visit and ~half at their last vaccination. Follow-up visits for each patient occurred monthly for 6 months. At each visit, we collected four images of the infant’s ears, and the child’s weight. We analyze ear area versus age and change in ear area versus age. We conduct pair-wise comparisons for all age intervals. Results From 227 enrolled infants we acquired age-specific datasets for 6 days through 9 months. Maximal ear growth occurred between 6 days and 14 weeks. Growth was significant until 6 months of age, after which further growth appeared minimal. Examining look-back performance to the 6-month visit, baseline pair-wise comparisons yielded identification rates that ranged 46.9–75%. Concatenating left and right ears per participant improved identification rates to 61.5–100%. Concatenating images captured on adjacent visits further improved identification rates to 90.3–100%. Lastly, combining these two approaches improved identification to 100%. All matching strategies showed the weakest matching rates during periods of maximal growth (i.e., <6 months). Conclusion By quantifying the effect that ear growth has on performance of the SEARCH platform, we show that ear identification is a feasible solution for patient identification in an infant population 6 months and above.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yuheng Guo

COVID-19 has had an inevitable impact on the daily life of people in 2020. Changes in behavior such as wearing masks have a considerable impact on biometric systems, especially face recognition systems. When people are aware of this impact, a comprehensive evaluation of this phenomenon is lacking. The purpose of this paper is to qualitatively evaluate the impact of COVID-19 on various biometric systems and to quantitatively evaluate face detection and recognition. The experimental results show that a real-world masked face dataset is essential to build an effective face recognition-based biometric system.


Author(s):  
Yohanssen Pratama ◽  
Lit Malem Ginting ◽  
Emma Hannisa Laurencia Nainggolan ◽  
Ade Erispra Rismanda

Presence system is a system for recording the individual attendance in the company, school or institution. There are several types presence system, including the manually presence system using signatures, presence system using fingerprints and presence system using face recognition technology. Presence system using face recognition technology is one of presence system that implements biometric system in the process of recording attendance. In this research we used one of the convolutional neural network (CNN) architectures that won the imagenet large scale visual recognition competition (ILSVRC) in 2015, namely the Residual Networks-50 architecture (ResNet-50) for face recognition. Our contribution in this research is to determine effectiveness ResNet architecture with different configuration of hyperparameters. This hyperparameters includes the number of hidden layers, the number of units in the hidden layer, batch size, and learning rate. Because hyperparameter are selected based on how the experiments performed and the value of each hyperparameter affects the final result accuracy, so we try 22 configurations (experiments) to get the best accuracy. We conducted experiments to get the best model with an accuracy of 99%.


Sign in / Sign up

Export Citation Format

Share Document