MKEL: Multiple Kernel Ensemble Learning via Unified Ensemble Loss for Image Classification

2021 ◽  
Vol 12 (4) ◽  
pp. 1-21
Author(s):  
Xiangjun Shen ◽  
Kou Lu ◽  
Sumet Mehta ◽  
Jianming Zhang ◽  
Weifeng Liu ◽  
...  

In this article, a novel ensemble model, called Multiple Kernel Ensemble Learning (MKEL), is developed by introducing a unified ensemble loss. Different from the previous multiple kernel learning (MKL) methods, which attempt to seek a linear combination of basis kernels as a unified kernel, our MKEL model aims to find multiple solutions in corresponding Reproducing Kernel Hilbert Spaces (RKHSs) simultaneously. To achieve this goal, multiple individual kernel losses are integrated into a unified ensemble loss. Therefore, each model can co-optimize to learn its optimal parameters by minimizing a unified ensemble loss in multiple RKHSs. Furthermore, we apply our proposed ensemble loss into the deep network paradigm and take the sub-network as a kernel mapping from the original input space into a feature space, named Deep-MKEL (D-MKEL). Our D-MKEL model can utilize the diversified deep individual sub-networks into a whole unified network to improve the classification performance. With this unified loss design, our D-MKEL model can make our network much wider than other traditional deep kernel networks and more parameters are learned and optimized. Experimental results on several mediate UCI classification and computer vision datasets demonstrate that our MKEL model can achieve the best classification performance among comparative MKL methods, such as Simple MKL, GMKL, Spicy MKL, and Matrix-Regularized MKL. On the contrary, experimental results on large-scale CIFAR-10 and SVHN datasets concretely show the advantages and potentialities of the proposed D-MKEL approach compared to state-of-the-art deep kernel methods.

2013 ◽  
Vol 11 (05) ◽  
pp. 1350020 ◽  
Author(s):  
HONGWEI SUN ◽  
QIANG WU

We study the asymptotical properties of indefinite kernel network with coefficient regularization and dependent sampling. The framework under investigation is different from classical kernel learning. Positive definiteness is not required by the kernel function and the samples are allowed to be weakly dependent with the dependence measured by a strong mixing condition. By a new kernel decomposition technique introduced in [27], two reproducing kernel Hilbert spaces and their associated kernel integral operators are used to characterize the properties and learnability of the hypothesis function class. Capacity independent error bounds and learning rates are deduced.


2014 ◽  
Vol 9 (4) ◽  
pp. 827-931 ◽  
Author(s):  
Joseph A. Ball ◽  
Dmitry S. Kaliuzhnyi-Verbovetskyi ◽  
Cora Sadosky ◽  
Victor Vinnikov

2009 ◽  
Vol 80 (3) ◽  
pp. 430-453 ◽  
Author(s):  
JOSEF DICK

AbstractWe give upper bounds on the Walsh coefficients of functions for which the derivative of order at least one has bounded variation of fractional order. Further, we also consider the Walsh coefficients of functions in periodic and nonperiodic reproducing kernel Hilbert spaces. A lower bound which shows that our results are best possible is also shown.


2017 ◽  
Vol 87 (2) ◽  
pp. 225-244 ◽  
Author(s):  
Rani Kumari ◽  
Jaydeb Sarkar ◽  
Srijan Sarkar ◽  
Dan Timotin

Sign in / Sign up

Export Citation Format

Share Document