RAP: A Software Framework of Developing Convolutional Neural Networks for Resource-constrained Devices Using Environmental Monitoring as a Case Study

2021 ◽  
Vol 5 (4) ◽  
pp. 1-28
Author(s):  
Chia-Heng Tu ◽  
Qihui Sun ◽  
Hsiao-Hsuan Chang

Monitoring environmental conditions is an important application of cyber-physical systems. Typically, the monitoring is to perceive surrounding environments with battery-powered, tiny devices deployed in the field. While deep learning-based methods, especially the convolutional neural networks (CNNs), are promising approaches to enriching the functionalities offered by the tiny devices, they demand more computation and memory resources, which makes these methods difficult to be adopted on such devices. In this article, we develop a software framework, RAP , that permits the construction of the CNN designs by aggregating the existing, lightweight CNN layers, which are able to fit in the limited memory (e.g., several KBs of SRAM) on the resource-constrained devices satisfying application-specific timing constrains. RAP leverages the Python-based neural network framework Chainer to build the CNNs by mounting the C/C++ implementations of the lightweight layers, trains the built CNN models as the ordinary model-training procedure in Chainer, and generates the C version codes of the trained models. The generated programs are compiled into target machine executables for the on-device inferences. With the vigorous development of lightweight CNNs, such as binarized neural networks with binary weights and activations, RAP facilitates the model building process for the resource-constrained devices by allowing them to alter, debug, and evaluate the CNN designs over the C/C++ implementation of the lightweight CNN layers. We have prototyped the RAP framework and built two environmental monitoring applications for protecting endangered species using image- and acoustic-based monitoring methods. Our results show that the built model consumes less than 0.5 KB of SRAM for buffering the runtime data required by the model inference while achieving up to 93% of accuracy for the acoustic monitoring with less than one second of inference time on the TI 16-bit microcontroller platform.

Author(s):  
Rezeda Khaydarova ◽  
Dmitriy Mouromtsev ◽  
Vladislav Fishchenko ◽  
Vladislav Shmatkov ◽  
Maxim Lapaev ◽  
...  

The paper is dedicated to distributed convolutional neural networks on a resource constrained devices cluster. The authors focus on requirements that meet the users' needs. Based on this, architecture of the system is proposed. Two use cases of CNN computations on a ROCK-CNN cluster are mentioned, and algorithms for organizing distributed convolutional neural networks are described. Experiments to validate proposed architecture and algorithms for distributed deep learning computations are conducted as well.


Informatica ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 193-214 ◽  
Author(s):  
Tung-Tso Tsai ◽  
Sen-Shan Huang ◽  
Yuh-Min Tseng

2021 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Ivan Lorencin ◽  
Sandi Baressi Šegota ◽  
Nikola Anđelić ◽  
Anđela Blagojević ◽  
Tijana Šušteršić ◽  
...  

COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro¯ and AUCmicro¯ up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro¯ and AUCmicro¯ values are achieved. If ResNet152 is utilized, AUCmacro¯ and AUCmicro¯ values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-38
Author(s):  
Varsha S. Lalapura ◽  
J. Amudha ◽  
Hariramn Selvamuruga Satheesh

Recurrent Neural Networks are ubiquitous and pervasive in many artificial intelligence applications such as speech recognition, predictive healthcare, creative art, and so on. Although they provide accurate superior solutions, they pose a massive challenge “training havoc.” Current expansion of IoT demands intelligent models to be deployed at the edge. This is precisely to handle increasing model sizes and complex network architectures. Design efforts to meet these for greater performance have had inverse effects on portability on edge devices with real-time constraints of memory, latency, and energy. This article provides a detailed insight into various compression techniques widely disseminated in the deep learning regime. They have become key in mapping powerful RNNs onto resource-constrained devices. While compression of RNNs is the main focus of the survey, it also highlights challenges encountered while training. The training procedure directly influences model performance and compression alongside. Recent advancements to overcome the training challenges with their strengths and drawbacks are discussed. In short, the survey covers the three-step process, namely, architecture selection, efficient training process, and suitable compression technique applicable to a resource-constrained environment. It is thus one of the comprehensive survey guides a developer can adapt for a time-series problem context and an RNN solution for the edge.


Sign in / Sign up

Export Citation Format

Share Document