Titania Containing Cathodes for Lithium-Sulfur Batteries: Case Studies by Electrochemical Impedance Spectroscopy

2021 ◽  
Vol 105 (1) ◽  
pp. 169-176
Author(s):  
Ladislav Kavan ◽  
Monika Vinarcikova ◽  
Magda Zlámalová ◽  
Marketa Zukalova

Electrochemical impedance spectroscopy is used to study novel cathode materials for lithium-sulfur batteries, based on commercial carbon and titania. Coin cells with Li anode are investigated at various stages of galvanostatic cycling. For comparison, also symmetrical coin cells with a pair of positive (S/C/TiO2) or negative (Li) electrodes are studied. In addition to the application of titania as a barrier material impeding the polysulfide diffusion in the electrolyte solution, the inherent Li-insertion activity of TiO2 (anatase) and its contribution to the sulfur redox reactions is discussed.

2013 ◽  
Vol 97 ◽  
pp. 42-51 ◽  
Author(s):  
Natalia A. Cañas ◽  
Kei Hirose ◽  
Brigitta Pascucci ◽  
Norbert Wagner ◽  
K. Andreas Friedrich ◽  
...  

2013 ◽  
Vol 833 ◽  
pp. 50-55 ◽  
Author(s):  
Lu Zheng ◽  
Liang Bin Liu ◽  
Xiao Jing Zhou ◽  
Yu Zhong Guo

Li (Ni1/3Co1/3Mn1/3) O2 cathode materials doped by Zn were synthesized by a co-precipitation routine, the first delithiation process of the samples with 0-4wt% of Zn doping were studied by electrochemical impedance spectroscopy (EIS) under the polarized voltage of 2.8-4.6V. The fitting results based on EIS data indicate that delithiation reactions happen within the voltage range of 3.7-4.4V ; The resistances of SEI film and charge transfer are both decreased significantly, whereas Li+ diffusion ability through layered crystalline lattice is improved largely with the increase of zinc doping from 0 to 4wt%.


MRS Advances ◽  
2018 ◽  
Vol 3 (53) ◽  
pp. 3155-3162 ◽  
Author(s):  
Bo Dong ◽  
Yige Li ◽  
Kazi Ahmed ◽  
Cengiz Sinan Ozkan ◽  
Mihrimah Ozkan

ABSTRACTIt is of great significance to understand and monitor the condition of the commercial batteries in EVs/HEVs and stationary applications under their real working situations. Electrochemical impedance spectroscopy (EIS) has been proved to be a powerful technique for investigating the kinetics and redox reactions at the interfaces, as well as the diffusion behavior in the bulks of every electrochemical systems. Focusing on tracing the temperature of the commercial batteries during the EIS tests at different stages in a well-designed four-week driving simulation, the value of temperature profile during the EIS test as an enhanced indicator to help analyzing the formation of the passivation layers, electrolyte impedance development as well as lithium plating on the anode through EIS analysis have been found.


Sign in / Sign up

Export Citation Format

Share Document