A Dual Extracellular Electron Transfer Mechanism Biofilm Model

2020 ◽  
Vol 7 (10) ◽  
pp. 3189-3200
Author(s):  
María Victoria Ordóñez ◽  
Luciana Robuschi ◽  
Cristina Elena Hoppe ◽  
Juan Pablo Busalmen

Key elements of Geobacter's extracellular electron transfer mechanism are characterized combining respiratory formed gold nanoparticles with spectro-electrochemical and microelectrode techniques.


Nature ◽  
2018 ◽  
Vol 562 (7725) ◽  
pp. 140-144 ◽  
Author(s):  
Samuel H. Light ◽  
Lin Su ◽  
Rafael Rivera-Lugo ◽  
Jose A. Cornejo ◽  
Alexander Louie ◽  
...  

2020 ◽  
Author(s):  
luyan ma

<p>Microbial nanowires are nanofilaments that could offer an extracellular electron transfer (EET) pathway linking the bacterial respiratory chain to external surfaces, such as oxidized metals in the environment and engineered electrodes in renewable energy devices. Filaments proposed to function as nanowires have been reported in multiple bacteria, yet it remains largely unclear about the composition and electron transfer mechanism of bacterial nanowires. Pseudomonas aeruginosa is an environmental and electrochemically active bacterium. In this study, we found nanotube-like extracellular filaments in P. aeruginosa biofilms, which were bacterial membrane extensions similar to the nanowires reported in Shewanella oneidensis. Remarkably, conductive probe atomic force microscope showed measurable conductivity of these extracellular filaments, suggesting that they may function as nanowires in P. aeruginosa. Our results also indicated that the electron shuttle pyocyanin significantly affected the conductivity of P. aeruginosa nanowires, suggesting that the electron transfer mechanism of P. aeruginosa nanowires was different from S. oneidensis. Furthermore, factors that impact biofilm formation, such as flagella, type IV pili, and exopolysaccharides, were not essential for nanowires formation, while affect the formation and length of nanowires of P. aeruginosa. Taken together, this is the first report that investigated the role of electron shuttle on the conductivity of nanowires and factors that affected nanowires formation.</p>


Sign in / Sign up

Export Citation Format

Share Document