Nature-Derived Organic Mesomeric Electrolyte for Low Cost and High Capacity Aqueous Flow Battery

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 300-300
Author(s):  
Matt McPhail ◽  
Rajan Kumar ◽  
Vivek Subramanian

2016 ◽  
Vol 52 (99) ◽  
pp. 14270-14273 ◽  
Author(s):  
P. K. Leung ◽  
T. Martin ◽  
A. A. Shah ◽  
M. A. Anderson ◽  
J. Palma

A new organic–inorganic membrane-less flow battery based on low cost materials with stable performance.


Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2014 ◽  
Vol 9 (2) ◽  
pp. 76-78
Author(s):  
S. Harris
Keyword(s):  
Low Cost ◽  

2018 ◽  
Vol 6 (44) ◽  
pp. 21927-21932 ◽  
Author(s):  
Matthew B. Freeman ◽  
Le Wang ◽  
Daniel S. Jones ◽  
Christopher M. Bejger

A water-soluble Co6S8 molecular cluster was prepared and electrochemically analyzed as a potential active material for redox flow battery applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

Sign in / Sign up

Export Citation Format

Share Document