H2O2 and ethanol act synergistically to gate ryanodine receptor/calcium-release channel

2000 ◽  
Vol 279 (5) ◽  
pp. C1366-C1374 ◽  
Author(s):  
Toshiharu Oba ◽  
Tatsuya Ishikawa ◽  
Takashi Murayama ◽  
Yasuo Ogawa ◽  
Mamoru Yamaguchi

We examined the effect of low concentrations of H2O2 on the Ca2+-release channel/ryanodine receptor (RyR) to determine if H2O2 plays a physiological role in skeletal muscle function. Sarcoplasmic reticulum vesicles from frog skeletal muscle and type 1 RyRs (RyR1) purified from rabbit skeletal muscle were incorporated into lipid bilayers. Channel activity of the frog RyR was not affected by application of 4.4 mM (0.02%) ethanol. Open probability ( P o) of such ethanol-treated RyR channels was markedly increased on subsequent addition of 10 μM H2O2. Increase of H2O2to 100 μM caused a further increase in channel activity. Application of 4.4 mM ethanol to 10 μM H2O2-treated RyRs activated channel activity. Exposure to 10 or 100 μM H2O2 alone, however, failed to increase P o. Synergistic action of ethanol and H2O2 was also observed on the purified RyR1 channel, which was free from FK506 binding protein (FKBP12). H2O2 at 100–500 μM had no effect on purified channel activity. Application of FKBP12 to the purified RyR1 drastically decreased channel activity but did not alter the effects of ethanol and H2O2. These results suggest that H2O2 may play a pathophysiological, but probably not a physiological, role by directly acting on skeletal muscle RyRs in the presence of ethanol.

2010 ◽  
Vol 109 (3) ◽  
pp. 830-839 ◽  
Author(s):  
Chengju Tian ◽  
Chun Hong Shao ◽  
Danielle S. Fenster ◽  
Mark Mixan ◽  
Debra J. Romberger ◽  
...  

Skeletal muscle weakness is a reported ailment in individuals working in commercial hog confinement facilities. To date, specific mechanisms responsible for this symptom remain undefined. The purpose of this study was to assess whether hog barn dust (HBD) contains components that are capable of binding to and modulating the activity of type 1 ryanodine receptor Ca2+-release channel (RyR1), a key regulator of skeletal muscle function. HBD collected from confinement facilities in Nebraska were extracted with chloroform, filtered, and rotary evaporated to dryness. Residues were resuspended in hexane-chloroform (20:1) and precipitates, referred to as HBDorg, were air-dried and studied further. In competition assays, HBDorg dose-dependently displaced [3H]ryanodine from binding sites on RyR1 with an IC50 of 1.5 ± 0.1 μg/ml ( Ki = 0.4 ± 0.0 μg/ml). In single-channel assays using RyR1 reconstituted into a lipid bilayer, HBDorg exhibited three distinct dose-dependent effects: first it increased the open probability of RyR1 by increasing its gating frequency and dwell time in the open state, then it induced a state of reduced conductance (55% of maximum) that was more likely to occur and persist at positive holding potentials, and finally it irreversibly closed RyR1. In differentiated C2C12 myotubes, addition of HBD triggered a rise in intracellular Ca2+ that was blocked by pretreatment with ryanodine. Since persistent activation and/or closure of RyR1 results in skeletal muscle weakness, these new data suggest that HBD is responsible, at least in part, for the muscle ailment reported by hog confinement workers.


1986 ◽  
Vol 88 (5) ◽  
pp. 573-588 ◽  
Author(s):  
J S Smith ◽  
R Coronado ◽  
G Meissner

A high-conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy-density skeletal muscle sarcoplasmic reticulum (SR) fractions into planar lipid bilayers of the Mueller-Rudin type. cis Ca2+ in the range of 2-950 microM increased open probability (Po) in single channel records without affecting open event lifetimes. Millimolar ATP was found to be as good as or better than Ca2+ in activation; however, both Ca2+ and ATP were required to fully activate the channel, i.e., to bring Po = 1. Exponential fits to open and closed single channel lifetimes suggested that the channel may exist in many distinct states. Two open and two closed states were identified when the channel was activated by either Ca2+ or ATP alone or by Ca2+ plus nucleotide. Mg2+ was found to permeate the SR Ca channel in a trans-to-cis direction such that iMg2+/iCa2+ = 0.40. cis Mg2+ was inhibitory and in single channel recordings produced an unresolvable flickering of Ca- and nucleotide-activated channels. At nanomolar cis Ca2+, 4 microM Mg2+ completely inhibited nucleotide-activated channels. In the presence of 2 microM cis Ca2+, the nucleotide-activated macroscopic Ba conductance was inhibited by cis Mg2+ with an IC50 equal to 1.5 mM.


2003 ◽  
Vol 160 (6) ◽  
pp. 919-928 ◽  
Author(s):  
Steven Reiken ◽  
Alain Lacampagne ◽  
Hua Zhou ◽  
Aftab Kherani ◽  
Stephan E. Lehnart ◽  
...  

The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation–contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation. We show that PKA phosphorylation of RyR1 at Ser2843 activates the channel by releasing FKBP12. When FKB12 is bound to RyR1, it inhibits the channel by stabilizing its closed state. RyR1 in skeletal muscle from animals with heart failure (HF), a chronic hyperadrenergic state, were PKA hyperphosphorylated, depleted of FKBP12, and exhibited increased activity, suggesting that the channels are “leaky.” RyR1 PKA hyperphosphorylation correlated with impaired SR Ca2+ release and early fatigue in HF skeletal muscle. These findings identify a novel mechanism that regulates RyR1 function via PKA phosphorylation in response to SNS stimulation. PKA hyperphosphorylation of RyR1 may contribute to impaired skeletal muscle function in HF, suggesting that a generalized EC coupling myopathy may play a role in HF.


2000 ◽  
Vol 11 (7) ◽  
pp. 2213-2219 ◽  
Author(s):  
Peter Koulen ◽  
Barbara E. Ehrlich

Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C2C12 mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.


FEBS Letters ◽  
1989 ◽  
Vol 259 (1) ◽  
pp. 217-221 ◽  
Author(s):  
Reinhold Penner ◽  
Erwin Neher ◽  
Hiroshi Takeshima ◽  
Seiichiro Nishimura ◽  
Shosaku Numa

Sign in / Sign up

Export Citation Format

Share Document